Improvement of the Performance of Biosensors Based on Bloch Surface Waves in a Hybrid One-Dimensional Photonic Crystal

Article Preview

Abstract:

In this article, we propose a biosensor based on a hybrid photonic crystal, the studied system is a superlattice consisting of a periodic alternation of poly(methyl methacrylate) (PMMA) and silicon dioxide (SiO₂) layers. Our study demonstrates that breaking the periodicity of the superlattice enables the excitation of Bloch surface waves within the photonic bandgap. This feature, along with its experimental convenience, justifies our choice of this structure for designing a biosensor in the Kretschmann configuration. Furthermore, we also analyzed the effect of various parameters, such as the number of layer repetitions, the frequency of the light waves used, and the thickness of the defect layer, on the biosensor's performance, the optimal structure, MgF₂/(PMMA/SiO₂)₃/D, demonstrates excellent sensing performance, achieving an angular sensitivity of 74°/RIU and a high figure of merit (FOM) of 1495/RIU.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1173)

Pages:

97-110

Citation:

Online since:

December 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Kinoshita S, Yoshioka S and Kawagoe K 2002 Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale Proc. R. Soc. Lond. B 269 1417–21.

DOI: 10.1098/rspb.2002.2019

Google Scholar

[2] Fink Y, Winn J N, Fan S, Chen C, Michel J, Joannopoulos J D and Thomas E L 1998 A Dielectric Omnidirectional Reflector Science 282 1679–82.

DOI: 10.1126/science.282.5394.1679

Google Scholar

[3] Hart S D, Maskaly G R, Temelkuran B, Prideaux P H, Joannopoulos J D and Fink Y 2002 External Reflection from Omnidirectional Dielectric Mirror Fibers Science 296 510–3.

DOI: 10.1126/science.1070050

Google Scholar

[4] Inan H, Poyraz M, Inci F, Lifson M A, Baday M, Cunningham B T and Demirci U 2017 Photonic crystals: emerging biosensors and their promise for point-of-care applications Chem. Soc. Rev. 46 366–88.

DOI: 10.1039/c6cs00206d

Google Scholar

[5] Fenzl C, Hirsch T and Wolfbeis O S 2014 Photonic Crystals for Chemical Sensing and Biosensing Angew Chem Int Ed 53 3318–35.

DOI: 10.1002/anie.201307828

Google Scholar

[6] Shaban M, Ahmed A M, Abdel-Rahman E and Hamdy H 2017 Tunability and Sensing Properties of Plasmonic/1D Photonic Crystal Sci Rep 7 41983.

DOI: 10.1038/srep41983

Google Scholar

[7] Nunes P S, Mortensen N A, Kutter J P and Mogensen K B 2010 Refractive Index Sensor Based on a 1D Photonic Crystal in a Microfluidic Channel Sensors 10 2348–58.

DOI: 10.3390/s100302348

Google Scholar

[8] Chang Y-H, Jhu Y-Y and Wu C-J 2012 Temperature dependence of defect mode in a defective photonic crystal Optics Communications 285 1501–4.

DOI: 10.1016/j.optcom.2011.10.053

Google Scholar

[9] Yan Q, Wang L and Zhao X S 2007 Artificial Defect Engineering in Three‐Dimensional Colloidal Photonic Crystals Adv Funct Materials 17 3695–706.

DOI: 10.1002/adfm.200600538

Google Scholar

[10] Yablonovitch E 1987 Inhibited Spontaneous Emission in Solid-State Physics and Electronics Phys. Rev. Lett. 58 2059–62.

DOI: 10.1103/physrevlett.58.2059

Google Scholar

[11] Rasooly A 2001 Surface Plasmon Resonance Analysis of Staphylococcal Enterotoxin B in Food Journal of Food Protection 64 37–43.

DOI: 10.4315/0362-028x-64.1.37

Google Scholar

[12] Mauriz E, Calle A, Manclús J J, Montoya A and Lechuga L M 2007 Multi-analyte SPR immunoassays for environmental biosensing of pesticides Anal Bioanal Chem 387 1449–58.

DOI: 10.1007/s00216-006-0800-z

Google Scholar

[13] Li J, Xia Z, Chu F, Zhang L, Liu L, Bian Z and Hu A 2020 A novel method to improve the measurement accuracy of multilayer surface plasmon resonance sensor Optik 222 165016.

DOI: 10.1016/j.ijleo.2020.165016

Google Scholar

[14] Malic L, Cui B, Veres T and Tabrizian M 2007 Enhanced surface plasmon resonance imaging detection of DNA hybridization on periodic gold nanoposts Opt. Lett. 32 3092.

DOI: 10.1364/ol.32.003092

Google Scholar

[15] Fenzl C, Hirsch T and Wolfbeis O S 2014 Photonic Crystals for Chemical Sensing and Biosensing Angew Chem Int Ed 53 3318–35.

DOI: 10.1002/anie.201307828

Google Scholar

[16] Chen H, Lou R, Chen Y, Chen L, Lu J and Dong Q 2017 Photonic crystal materials and their application in biomedicine Drug Delivery 24 775–80.

DOI: 10.1080/10717544.2017.1321059

Google Scholar

[17] Pileri T, Sinibaldi A, Occhicone A, Danz N, Giordani E, Allegretti M, Sonntag F, Munzert P, Giacomini P and Michelotti F 2024 Direct competitive assay for HER2 detection in human plasma using Bloch surface wave-based biosensors Analytical Biochemistry 684 115374.

DOI: 10.1016/j.ab.2023.115374

Google Scholar

[18] Sharifi H and Eskandari S 2024 Sensing blood components and cancer cells with photonic crystal resonator biosensor Results in Optics 14 100593.

DOI: 10.1016/j.rio.2023.100593

Google Scholar

[19] El Barghouti M, Houari F, Akjouj A and Mir A 2024 Engineering and optimization of the SPR device ZnO/Ag/WO3/Ni/2D-Nanomaterials highly sensitive for biomedical processing and detection Optical Materials 149 115019.

DOI: 10.1016/j.optmat.2024.115019

Google Scholar

[20] Srivastava R, Kumar V and Prajapati Y K 2024 Highly sensitive SPR based PCF sensor for broader analyte detection range including blood compositions detection Optik 314 172010.

DOI: 10.1016/j.ijleo.2024.172010

Google Scholar

[21] Manuel M, Vidal B, López R, Alegret S, Alonso-Chamarro J, Garces I and Mateo J 1993 Determination of probable alcohol yield in musts by means of an SPR optical sensor Sensors and Actuators B: Chemical 11 455–9.

DOI: 10.1016/0925-4005(93)85287-k

Google Scholar

[22] El Abouti O, El Boudouti E H, El Hassouani Y, Noual A and Djafari-Rouhani B 2016 Optical Tamm states in one-dimensional superconducting photonic crystal Physics of Plasmas 23 082115.

DOI: 10.1063/1.4960983

Google Scholar

[23] Paeder V, Musi V, Hvozdara L, Herminjard S and Herzig H P 2011 Detection of protein aggregation with a Bloch surface wave based sensor Sensors and Actuators B: Chemical 157 260–4.

DOI: 10.1016/j.snb.2011.03.060

Google Scholar

[24] Li Y, Yang T, Pang Z, Du G, Song S and Han S 2014 Phase-sensitive Bloch surface wave sensor based on variable angle spectroscopic ellipsometry Opt. Express 22 21403.

DOI: 10.1364/oe.22.021403

Google Scholar

[25] Baghbadorani H K, Barvestani J and Entezar S R 2017 Biosensors based on Bloch surface waves in one-dimensional photonic crystal with graphene nanolayers Appl. Opt. 56 462.

DOI: 10.1364/ao.56.000462

Google Scholar

[26] Sreekanth K V, Zeng S, Yong K-T and Yu T 2013 Sensitivity enhanced biosensor using graphene-based one-dimensional photonic crystal Sensors and Actuators B: Chemical 182 424–8.

DOI: 10.1016/j.snb.2013.03.039

Google Scholar

[27] Singh Y, Paswan M K and Raghuwanshi S K 2021 Sensitivity Enhancement of SPR Sensor with the Black Phosphorus and Graphene with Bi-layer of Gold for Chemical Sensing Plasmonics 16 1781–90.

DOI: 10.1007/s11468-020-01315-3

Google Scholar

[28] Fan X, White I M, Shopova S I, Zhu H, Suter J D and Sun Y 2008. Sensitive optical biosensors for unlabeled targets: A review Analytica Chimica Acta 620 8–26.

DOI: 10.1016/j.aca.2008.05.022

Google Scholar

[29] Soltani O, Zaghdoudi J and Kanzari M 2018 High quality factor polychromatic filters based on hybrid photonic structures Chinese Journal of Physics 56 2479–87.

DOI: 10.1016/j.cjph.2018.05.025

Google Scholar

[30] Aly A H and Zaky Z A 2019 Ultra-sensitive photonic crystal cancer cells sensor with a high-quality factor Cryogenics 104 102991.

DOI: 10.1016/j.cryogenics.2019.102991

Google Scholar

[31] Moznuzzaman Md, Islam Md R and Khan I 2021 Effect of layer thickness variation on sensitivity: An SPR based sensor for formalin detection Sensing and Bio-Sensing Research 32 100419.

DOI: 10.1016/j.sbsr.2021.100419

Google Scholar

[32] Lu X, Damborský P, Munief W-M, Ka-Yan Law J, Chen X, Katrlík J, Pachauri V and Ingebrandt S 2022 Electrical SPR biosensor with thermal annealed graphene oxide: Concept of highly sensitive biomolecule detection Biosensors and Bioelectronics: X 11 100152.

DOI: 10.1016/j.biosx.2022.100152

Google Scholar

[33] Kumar V, Kumar Raghuwanshi S and Kumar S 2024 Highly sensitive Ag/BaTiO3/MoS2 nano composite layer based SPR sensor for detection of blood and cervical cancer Results in Optics 14 100597.

DOI: 10.1016/j.rio.2023.100597

Google Scholar

[34] Gan S, Wang H, Liang J, Dai X and Xiang Y 2019 Ultra-Sensitive Refractive Index Sensors Based on Bloch Surface Waves With Transition Metal Dichalcogenides IEEE Sensors J. 19 8675–80.

DOI: 10.1109/jsen.2019.2922966

Google Scholar

[35] Yeh P, Yariv A and Cho A Y 1978 Optical surface waves in periodic layered media Applied Physics Letters 32 104–5.

DOI: 10.1063/1.89953

Google Scholar

[36] Robertson W M and May M S 1999 Surface electromagnetic wave excitation on one-dimensional photonic band-gap arrays Applied Physics Letters 74 1800–2.

DOI: 10.1063/1.123090

Google Scholar

[37] Robertson W M, Wright S M, Friedli A, Summers J and Kaszynski A 2020 Design and characterization of an ultra-low-cost 3D-printed optical sensor based on Bloch surface wave resonance Biosensors and Bioelectronics: X 5 100049.

DOI: 10.1016/j.biosx.2020.100049

Google Scholar

[38] Kalas B, Ferencz K, Saftics A, Czigany Z, Fried M and Petrik P 2021 Bloch surface waves biosensing in the ultraviolet wavelength range – Bragg structure design for investigating protein adsorption by in situ Kretschmann-Raether ellipsometry Applied Surface Science 536 147869.

DOI: 10.1016/j.apsusc.2020.147869

Google Scholar

[39] Occhicone A, Sinibaldi A, Chiappetta D, Di Matteo P, Pileri T, Danz N, Sonntag F, Munzert P, Allegretti M, De Pascale V, Mandoj C and Michelotti F 2023 Detection of anti-SARS CoV-2 antibodies in human serum by means of Bloch surface waves on 1D photonic crystal biochips Biosensors and Bioelectronics: X 15 100413.

DOI: 10.1016/j.biosx.2023.100413

Google Scholar

[40] Pileri T, Sinibaldi A, Occhicone A, Danz N, Giordani E, Allegretti M, Sonntag F, Munzert P, Giacomini P and Michelotti F 2024 Direct competitive assay for HER2 detection in human plasma using Bloch surface wave-based biosensors Analytical Biochemistry 684 115374.

DOI: 10.1016/j.ab.2023.115374

Google Scholar

[41] Figueroa Del Valle D G, Aluicio-Sarduy E and Scotognella F 2015 Photonic band gap in 1D multilayers made by alternating SiO2 or PMMA with MoS2 or WS2 monolayers Optical Materials 48 267–70.

DOI: 10.1016/j.optmat.2015.08.012

Google Scholar

[42] Liu J-T, Liu N-H, Li J, Jing Li X and Huang J-H 2012 Enhanced absorption of graphene with one-dimensional photonic crystal Appl. Phys. Lett. 101 052104.

DOI: 10.1063/1.4740261

Google Scholar

[43] Dobrzyński L, Akjouj A, El Boudouti E H, Lévêque G, Al-Wahsh H, Pennec Y, Ghouila-Houri C, Talbi A, Djafari-Rouhani B and Jin Y 2021 Photonics (Amsterdam Kidlington, Oxford Cambridge, MA: Elsevier).

DOI: 10.1016/b978-0-12-819388-4.00009-5

Google Scholar

[44] Thi Hong P, Nguyen H Q and Nghiem H T M 2023 Complex refractive index measurements of poly(methyl methacrylate) (PMMA) over the UV-VIS-NIR region Opt. Continuum 2 2280.

DOI: 10.1364/optcon.495634

Google Scholar

[45] Gao L, Lemarchand F and Lequime M 2013 Refractive index determination of SiO2 layer in the UV/Vis/NIR range: spectrophotometric reverse engineering on single and bi-layer designs J. Eur. Opt. Soc.-Rapid Publ. 8 13010.

DOI: 10.2971/jeos.2013.13010

Google Scholar

[46] Sinibaldi A, Danz N, Descrovi E, Munzert P, Schulz U, Sonntag F, Dominici L and Michelotti F 2012 Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors Sensors and Actuators B: Chemical 174 292–8.

DOI: 10.1016/j.snb.2012.07.015

Google Scholar

[47] Kaviani Baghbadorani H and Barvestani J 2021 Sensing improvement of 1D photonic crystal sensors by hybridization of defect and Bloch surface modes Applied Surface Science 537 147730.

DOI: 10.1016/j.apsusc.2020.147730

Google Scholar

[48] Yang Q, Qin L, Cao G, Zhang C and Li X 2018 Refractive index sensor based on graphene-coated photonic surface-wave resonance Opt. Lett. 43 639.

DOI: 10.1364/ol.43.000639

Google Scholar

[49] Schneider D, Liaqat F, El Boudouti E H, El Abouti O, Tremel W, Butt H-J, Djafari-Rouhani B and Fytas G 2013 Defect-Controlled Hypersound Propagation in Hybrid Superlattices Phys. Rev. Lett. 111 164301.

DOI: 10.1103/physrevlett.111.164301

Google Scholar

[50] L. Dobrzynski, E. H. El Boudouti, A. Akjouj, Y. Pennec, H.Al-Wahsh, G. Lévêque, and B. Djafari-Rouhani, Phononics (Elsevier, Amsterdam, 2017).

DOI: 10.1016/b978-0-12-809948-3.09990-7

Google Scholar

[51] J. O. Vasseur, A. Akjouj, L. Dobrzynski, B. Djafari- Rouhani, and E. H. El Boudouti, Surf. Sci. Rep. 54, 1 (2004).

Google Scholar

[52] L. Dobrzynski, Surf. Sci. Rep. 11, 139 (1990).

Google Scholar

[53] L. Dobrzynski, J. Mendialdua, A. Rodriguez, S. Bolibo, and M. More, J. Phys. (France) 50, 2563 (1989).

DOI: 10.1051/jphys:0198900500180256300

Google Scholar

[54] M. L. Bah, A. Akjouj, and L Dobrzynski, Surf. Sci. Rep. 16, 97(1992).

Google Scholar

[55] E. H. El Boudouti, B. Djafari-Rouhani, E. M. Khourdifi, and L. Dobrzynski, Phys. Rev. B 48, 10987 (1993).

DOI: 10.1103/physrevb.48.10987

Google Scholar