[1]
Kinoshita S, Yoshioka S and Kawagoe K 2002 Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale Proc. R. Soc. Lond. B 269 1417–21.
DOI: 10.1098/rspb.2002.2019
Google Scholar
[2]
Fink Y, Winn J N, Fan S, Chen C, Michel J, Joannopoulos J D and Thomas E L 1998 A Dielectric Omnidirectional Reflector Science 282 1679–82.
DOI: 10.1126/science.282.5394.1679
Google Scholar
[3]
Hart S D, Maskaly G R, Temelkuran B, Prideaux P H, Joannopoulos J D and Fink Y 2002 External Reflection from Omnidirectional Dielectric Mirror Fibers Science 296 510–3.
DOI: 10.1126/science.1070050
Google Scholar
[4]
Inan H, Poyraz M, Inci F, Lifson M A, Baday M, Cunningham B T and Demirci U 2017 Photonic crystals: emerging biosensors and their promise for point-of-care applications Chem. Soc. Rev. 46 366–88.
DOI: 10.1039/c6cs00206d
Google Scholar
[5]
Fenzl C, Hirsch T and Wolfbeis O S 2014 Photonic Crystals for Chemical Sensing and Biosensing Angew Chem Int Ed 53 3318–35.
DOI: 10.1002/anie.201307828
Google Scholar
[6]
Shaban M, Ahmed A M, Abdel-Rahman E and Hamdy H 2017 Tunability and Sensing Properties of Plasmonic/1D Photonic Crystal Sci Rep 7 41983.
DOI: 10.1038/srep41983
Google Scholar
[7]
Nunes P S, Mortensen N A, Kutter J P and Mogensen K B 2010 Refractive Index Sensor Based on a 1D Photonic Crystal in a Microfluidic Channel Sensors 10 2348–58.
DOI: 10.3390/s100302348
Google Scholar
[8]
Chang Y-H, Jhu Y-Y and Wu C-J 2012 Temperature dependence of defect mode in a defective photonic crystal Optics Communications 285 1501–4.
DOI: 10.1016/j.optcom.2011.10.053
Google Scholar
[9]
Yan Q, Wang L and Zhao X S 2007 Artificial Defect Engineering in Three‐Dimensional Colloidal Photonic Crystals Adv Funct Materials 17 3695–706.
DOI: 10.1002/adfm.200600538
Google Scholar
[10]
Yablonovitch E 1987 Inhibited Spontaneous Emission in Solid-State Physics and Electronics Phys. Rev. Lett. 58 2059–62.
DOI: 10.1103/physrevlett.58.2059
Google Scholar
[11]
Rasooly A 2001 Surface Plasmon Resonance Analysis of Staphylococcal Enterotoxin B in Food Journal of Food Protection 64 37–43.
DOI: 10.4315/0362-028x-64.1.37
Google Scholar
[12]
Mauriz E, Calle A, Manclús J J, Montoya A and Lechuga L M 2007 Multi-analyte SPR immunoassays for environmental biosensing of pesticides Anal Bioanal Chem 387 1449–58.
DOI: 10.1007/s00216-006-0800-z
Google Scholar
[13]
Li J, Xia Z, Chu F, Zhang L, Liu L, Bian Z and Hu A 2020 A novel method to improve the measurement accuracy of multilayer surface plasmon resonance sensor Optik 222 165016.
DOI: 10.1016/j.ijleo.2020.165016
Google Scholar
[14]
Malic L, Cui B, Veres T and Tabrizian M 2007 Enhanced surface plasmon resonance imaging detection of DNA hybridization on periodic gold nanoposts Opt. Lett. 32 3092.
DOI: 10.1364/ol.32.003092
Google Scholar
[15]
Fenzl C, Hirsch T and Wolfbeis O S 2014 Photonic Crystals for Chemical Sensing and Biosensing Angew Chem Int Ed 53 3318–35.
DOI: 10.1002/anie.201307828
Google Scholar
[16]
Chen H, Lou R, Chen Y, Chen L, Lu J and Dong Q 2017 Photonic crystal materials and their application in biomedicine Drug Delivery 24 775–80.
DOI: 10.1080/10717544.2017.1321059
Google Scholar
[17]
Pileri T, Sinibaldi A, Occhicone A, Danz N, Giordani E, Allegretti M, Sonntag F, Munzert P, Giacomini P and Michelotti F 2024 Direct competitive assay for HER2 detection in human plasma using Bloch surface wave-based biosensors Analytical Biochemistry 684 115374.
DOI: 10.1016/j.ab.2023.115374
Google Scholar
[18]
Sharifi H and Eskandari S 2024 Sensing blood components and cancer cells with photonic crystal resonator biosensor Results in Optics 14 100593.
DOI: 10.1016/j.rio.2023.100593
Google Scholar
[19]
El Barghouti M, Houari F, Akjouj A and Mir A 2024 Engineering and optimization of the SPR device ZnO/Ag/WO3/Ni/2D-Nanomaterials highly sensitive for biomedical processing and detection Optical Materials 149 115019.
DOI: 10.1016/j.optmat.2024.115019
Google Scholar
[20]
Srivastava R, Kumar V and Prajapati Y K 2024 Highly sensitive SPR based PCF sensor for broader analyte detection range including blood compositions detection Optik 314 172010.
DOI: 10.1016/j.ijleo.2024.172010
Google Scholar
[21]
Manuel M, Vidal B, López R, Alegret S, Alonso-Chamarro J, Garces I and Mateo J 1993 Determination of probable alcohol yield in musts by means of an SPR optical sensor Sensors and Actuators B: Chemical 11 455–9.
DOI: 10.1016/0925-4005(93)85287-k
Google Scholar
[22]
El Abouti O, El Boudouti E H, El Hassouani Y, Noual A and Djafari-Rouhani B 2016 Optical Tamm states in one-dimensional superconducting photonic crystal Physics of Plasmas 23 082115.
DOI: 10.1063/1.4960983
Google Scholar
[23]
Paeder V, Musi V, Hvozdara L, Herminjard S and Herzig H P 2011 Detection of protein aggregation with a Bloch surface wave based sensor Sensors and Actuators B: Chemical 157 260–4.
DOI: 10.1016/j.snb.2011.03.060
Google Scholar
[24]
Li Y, Yang T, Pang Z, Du G, Song S and Han S 2014 Phase-sensitive Bloch surface wave sensor based on variable angle spectroscopic ellipsometry Opt. Express 22 21403.
DOI: 10.1364/oe.22.021403
Google Scholar
[25]
Baghbadorani H K, Barvestani J and Entezar S R 2017 Biosensors based on Bloch surface waves in one-dimensional photonic crystal with graphene nanolayers Appl. Opt. 56 462.
DOI: 10.1364/ao.56.000462
Google Scholar
[26]
Sreekanth K V, Zeng S, Yong K-T and Yu T 2013 Sensitivity enhanced biosensor using graphene-based one-dimensional photonic crystal Sensors and Actuators B: Chemical 182 424–8.
DOI: 10.1016/j.snb.2013.03.039
Google Scholar
[27]
Singh Y, Paswan M K and Raghuwanshi S K 2021 Sensitivity Enhancement of SPR Sensor with the Black Phosphorus and Graphene with Bi-layer of Gold for Chemical Sensing Plasmonics 16 1781–90.
DOI: 10.1007/s11468-020-01315-3
Google Scholar
[28]
Fan X, White I M, Shopova S I, Zhu H, Suter J D and Sun Y 2008. Sensitive optical biosensors for unlabeled targets: A review Analytica Chimica Acta 620 8–26.
DOI: 10.1016/j.aca.2008.05.022
Google Scholar
[29]
Soltani O, Zaghdoudi J and Kanzari M 2018 High quality factor polychromatic filters based on hybrid photonic structures Chinese Journal of Physics 56 2479–87.
DOI: 10.1016/j.cjph.2018.05.025
Google Scholar
[30]
Aly A H and Zaky Z A 2019 Ultra-sensitive photonic crystal cancer cells sensor with a high-quality factor Cryogenics 104 102991.
DOI: 10.1016/j.cryogenics.2019.102991
Google Scholar
[31]
Moznuzzaman Md, Islam Md R and Khan I 2021 Effect of layer thickness variation on sensitivity: An SPR based sensor for formalin detection Sensing and Bio-Sensing Research 32 100419.
DOI: 10.1016/j.sbsr.2021.100419
Google Scholar
[32]
Lu X, Damborský P, Munief W-M, Ka-Yan Law J, Chen X, Katrlík J, Pachauri V and Ingebrandt S 2022 Electrical SPR biosensor with thermal annealed graphene oxide: Concept of highly sensitive biomolecule detection Biosensors and Bioelectronics: X 11 100152.
DOI: 10.1016/j.biosx.2022.100152
Google Scholar
[33]
Kumar V, Kumar Raghuwanshi S and Kumar S 2024 Highly sensitive Ag/BaTiO3/MoS2 nano composite layer based SPR sensor for detection of blood and cervical cancer Results in Optics 14 100597.
DOI: 10.1016/j.rio.2023.100597
Google Scholar
[34]
Gan S, Wang H, Liang J, Dai X and Xiang Y 2019 Ultra-Sensitive Refractive Index Sensors Based on Bloch Surface Waves With Transition Metal Dichalcogenides IEEE Sensors J. 19 8675–80.
DOI: 10.1109/jsen.2019.2922966
Google Scholar
[35]
Yeh P, Yariv A and Cho A Y 1978 Optical surface waves in periodic layered media Applied Physics Letters 32 104–5.
DOI: 10.1063/1.89953
Google Scholar
[36]
Robertson W M and May M S 1999 Surface electromagnetic wave excitation on one-dimensional photonic band-gap arrays Applied Physics Letters 74 1800–2.
DOI: 10.1063/1.123090
Google Scholar
[37]
Robertson W M, Wright S M, Friedli A, Summers J and Kaszynski A 2020 Design and characterization of an ultra-low-cost 3D-printed optical sensor based on Bloch surface wave resonance Biosensors and Bioelectronics: X 5 100049.
DOI: 10.1016/j.biosx.2020.100049
Google Scholar
[38]
Kalas B, Ferencz K, Saftics A, Czigany Z, Fried M and Petrik P 2021 Bloch surface waves biosensing in the ultraviolet wavelength range – Bragg structure design for investigating protein adsorption by in situ Kretschmann-Raether ellipsometry Applied Surface Science 536 147869.
DOI: 10.1016/j.apsusc.2020.147869
Google Scholar
[39]
Occhicone A, Sinibaldi A, Chiappetta D, Di Matteo P, Pileri T, Danz N, Sonntag F, Munzert P, Allegretti M, De Pascale V, Mandoj C and Michelotti F 2023 Detection of anti-SARS CoV-2 antibodies in human serum by means of Bloch surface waves on 1D photonic crystal biochips Biosensors and Bioelectronics: X 15 100413.
DOI: 10.1016/j.biosx.2023.100413
Google Scholar
[40]
Pileri T, Sinibaldi A, Occhicone A, Danz N, Giordani E, Allegretti M, Sonntag F, Munzert P, Giacomini P and Michelotti F 2024 Direct competitive assay for HER2 detection in human plasma using Bloch surface wave-based biosensors Analytical Biochemistry 684 115374.
DOI: 10.1016/j.ab.2023.115374
Google Scholar
[41]
Figueroa Del Valle D G, Aluicio-Sarduy E and Scotognella F 2015 Photonic band gap in 1D multilayers made by alternating SiO2 or PMMA with MoS2 or WS2 monolayers Optical Materials 48 267–70.
DOI: 10.1016/j.optmat.2015.08.012
Google Scholar
[42]
Liu J-T, Liu N-H, Li J, Jing Li X and Huang J-H 2012 Enhanced absorption of graphene with one-dimensional photonic crystal Appl. Phys. Lett. 101 052104.
DOI: 10.1063/1.4740261
Google Scholar
[43]
Dobrzyński L, Akjouj A, El Boudouti E H, Lévêque G, Al-Wahsh H, Pennec Y, Ghouila-Houri C, Talbi A, Djafari-Rouhani B and Jin Y 2021 Photonics (Amsterdam Kidlington, Oxford Cambridge, MA: Elsevier).
DOI: 10.1016/b978-0-12-819388-4.00009-5
Google Scholar
[44]
Thi Hong P, Nguyen H Q and Nghiem H T M 2023 Complex refractive index measurements of poly(methyl methacrylate) (PMMA) over the UV-VIS-NIR region Opt. Continuum 2 2280.
DOI: 10.1364/optcon.495634
Google Scholar
[45]
Gao L, Lemarchand F and Lequime M 2013 Refractive index determination of SiO2 layer in the UV/Vis/NIR range: spectrophotometric reverse engineering on single and bi-layer designs J. Eur. Opt. Soc.-Rapid Publ. 8 13010.
DOI: 10.2971/jeos.2013.13010
Google Scholar
[46]
Sinibaldi A, Danz N, Descrovi E, Munzert P, Schulz U, Sonntag F, Dominici L and Michelotti F 2012 Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors Sensors and Actuators B: Chemical 174 292–8.
DOI: 10.1016/j.snb.2012.07.015
Google Scholar
[47]
Kaviani Baghbadorani H and Barvestani J 2021 Sensing improvement of 1D photonic crystal sensors by hybridization of defect and Bloch surface modes Applied Surface Science 537 147730.
DOI: 10.1016/j.apsusc.2020.147730
Google Scholar
[48]
Yang Q, Qin L, Cao G, Zhang C and Li X 2018 Refractive index sensor based on graphene-coated photonic surface-wave resonance Opt. Lett. 43 639.
DOI: 10.1364/ol.43.000639
Google Scholar
[49]
Schneider D, Liaqat F, El Boudouti E H, El Abouti O, Tremel W, Butt H-J, Djafari-Rouhani B and Fytas G 2013 Defect-Controlled Hypersound Propagation in Hybrid Superlattices Phys. Rev. Lett. 111 164301.
DOI: 10.1103/physrevlett.111.164301
Google Scholar
[50]
L. Dobrzynski, E. H. El Boudouti, A. Akjouj, Y. Pennec, H.Al-Wahsh, G. Lévêque, and B. Djafari-Rouhani, Phononics (Elsevier, Amsterdam, 2017).
DOI: 10.1016/b978-0-12-809948-3.09990-7
Google Scholar
[51]
J. O. Vasseur, A. Akjouj, L. Dobrzynski, B. Djafari- Rouhani, and E. H. El Boudouti, Surf. Sci. Rep. 54, 1 (2004).
Google Scholar
[52]
L. Dobrzynski, Surf. Sci. Rep. 11, 139 (1990).
Google Scholar
[53]
L. Dobrzynski, J. Mendialdua, A. Rodriguez, S. Bolibo, and M. More, J. Phys. (France) 50, 2563 (1989).
DOI: 10.1051/jphys:0198900500180256300
Google Scholar
[54]
M. L. Bah, A. Akjouj, and L Dobrzynski, Surf. Sci. Rep. 16, 97(1992).
Google Scholar
[55]
E. H. El Boudouti, B. Djafari-Rouhani, E. M. Khourdifi, and L. Dobrzynski, Phys. Rev. B 48, 10987 (1993).
DOI: 10.1103/physrevb.48.10987
Google Scholar