[1]
K.Y. Choi, M. G. Lee, H. Y. Kim, Sheet metal forming simulation considering die deformation, International Journal of Automotive Technology. 14 (2013) 935-940.
DOI: 10.1007/s12239-013-0103-2
Google Scholar
[2]
V. Aitharaju, M. Liu, J. Dong, J. Zhang, C.T. Wang, Integrated forming simulations and die structural analysis for optimal die designs, AIP Conference Proceedings, American Institute of Physics. (2005) 96-100.
DOI: 10.1063/1.2011200
Google Scholar
[3]
A. S. Darmawan, A. D. Anggono, A. Hamid, Die design optimization on sheet metal forming with considering the phenomenon of springback to improve product quality, MATEC Web of Conferences, EDP Sciences. (2018) 01105.
DOI: 10.1051/matecconf/201815401105
Google Scholar
[4]
Y.B. Park, K.H. Lee, Study on the deformation of die and product in closed die upsetting, Journal of materials processing technology. 118.1-3 (2001) 417-421.
DOI: 10.1016/s0924-0136(01)00915-3
Google Scholar
[5]
D. Del Pozo, L.N.L. de Lacalle, J.M. Lopez, A. Hernandez, Machining of large dies based on the prediction of the press/die deformation, Intelligent Production Machines and Systems, Elsevier Science Ltd. (2006) 83-88.
DOI: 10.1016/b978-008045157-2/50021-3
Google Scholar
[6]
J. Pilthammar, M. Sigvant, S. Kao-Walter, Including die and press deformations in sheet metal forming simulations. Journal of physics: conference series. Vol. 734, No. 3, IOP Publishing. (2016) 032036.
DOI: 10.1088/1742-6596/734/3/032036
Google Scholar
[7]
J. Pilthammar, M. Sigvant, S. Kao-Walter, Introduction of elastic die deformations in sheet metal forming simulations, International Journal of Solids and Structures. 151 (2018) 76-90.
DOI: 10.1016/j.ijsolstr.2017.05.009
Google Scholar
[8]
M. Tisza, Z. Lukács, G. Gál, Integrated process simulation and die-design in sheet metal forming, International Journal of Material Forming. 1 (2008) 185-188.
DOI: 10.1007/s12289-008-0022-3
Google Scholar
[9]
J. Funada, S. Takahashi, H. Fukiharu, Die Deformation Measurement System during Sheet Metal Forming, AIP Conference Proceedings, American Institute of Physics. (2011) 390-397.
DOI: 10.1063/1.3623636
Google Scholar
[10]
D. Del Pozo, L.N. López de Lacalle J.M. López, A. Hernández, Prediction of press/die deformation for an accurate manufacturing of drawing dies, The International Journal of Advanced Manufacturing Technology. 37.7 (2008) 649-656.
DOI: 10.1007/s00170-007-1012-1
Google Scholar
[11]
A. Rosochowski, Die compensation procedure to negate die deflection and component springback, Journal of materials processing technology. 115.2 (2001) 187-191.
DOI: 10.1016/s0924-0136(01)00805-6
Google Scholar
[12]
R. Lingbeek, J. Huetink, S. Ohnimus, M. Petzoldt, J. Weiher, The development of a finite elements based springback compensation tool for sheet metal products, Journal of Materials Processing Technology. 169.1 (2005) 115-125.
DOI: 10.1016/j.jmatprotec.2005.04.027
Google Scholar
[13]
X.A. Yang, F. Ruan, A die design method for springback compensation based on displacement adjustment, International Journal of Mechanical Sciences. 53.5 (2011) 399-406.
DOI: 10.1016/j.ijmecsci.2011.03.002
Google Scholar
[14]
J. Pilthammar, M. Sigvant, M. Hansson, E. Pálsson, W. Rutgersson, Characterizing the elastic behaviour of a press table through topology optimization, Journal of Physics: conference series. Vol. 896, No. 1, IOP Publishing. (2017) 012068.
DOI: 10.1088/1742-6596/896/1/012068
Google Scholar
[15]
R. Hill, A theory of the yielding and plastic flow of anisotropic metals, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences. 193.1033 (1948) 281-297.
DOI: 10.1098/rspa.1948.0045
Google Scholar
[16]
P. Ludwik, Elements der Technologischen Mechanik, Verlag von Julius Springer, Leipzig. (1909) p.32.
Google Scholar