[1]
S. Panich, M. Liewald, V. Uthaisangsuk, Int. J. Mater. Form., Stress and strain-based fracture forming limit curves for advanced high strength steel sheet, 11 (2018) 643-661.
DOI: 10.1007/s12289-017-1378-z
Google Scholar
[2]
S. Panich et al., Experimental and theoretical formability analysis using strain and stress based forming limit diagram for advanced high strength steels, Mater Des 51 (2013) 756-766.
DOI: 10.1016/j.matdes.2013.04.080
Google Scholar
[3]
S. Panich, K. Chongbunwatana, T. Jantarasricha, Formability evaluation of sheet metal forming on advanced high-strength steel via an integrative experimental-theoretical approach based on localized necking and fracture limits, J. Mech. Sci. Tech. 35 (2021) 5389-5404.
DOI: 10.1007/s12206-021-1110-2
Google Scholar
[4]
A. L. Gurson, Continuum theory of ductile rupture by void nucleation and growth: Part I-Yield criteria and flow rules for porous ductile media, J. Eng. Mater. Tech. (1977): 2-15.
DOI: 10.2172/7351470
Google Scholar
[5]
V. Tvergaard, Influence of voids on shear band instabilities under plane strain conditions, Int. J. frac. 17 (1981) 389-407.
DOI: 10.1007/bf00036191
Google Scholar
[6]
G. R. Johnson, H. C. William, Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures, Eng. Frac. Mech. 21 (1985) 31-48.
DOI: 10.1016/0013-7944(85)90052-9
Google Scholar
[7]
Y. Bao, T. Wierzbicki, A comparative study on various ductile crack formation criteria, J. Eng. Mater. Technol. 126 (2004) 314-324.
DOI: 10.1115/1.1755244
Google Scholar
[8]
Y. Bao, T. Wierzbicki, On fracture locus in the equivalent strain and stress triaxiality space, Int. J Mech. Sci. 46.1 (2004): 81-98.
DOI: 10.1016/j.ijmecsci.2004.02.006
Google Scholar
[9]
Y. Bai, T. Wierzbicki, Application of extended Mohr–Coulomb criterion to ductile fracture, Int. J. frac. 161 (2010) 1-20.
DOI: 10.1007/s10704-009-9422-8
Google Scholar
[10]
Y. Lou, H. Huh, S. Lim, K. Pack, New ductile fracture criterion for prediction of fracture forming limit diagrams of sheet metals, Int. J. Solid. Struct. 49 (2012) 3605-3615.
DOI: 10.1016/j.ijsolstr.2012.02.016
Google Scholar
[11]
D. Mohr, S. J. Marcadet, Micromechanically-motivated phenomenological Hosford–Coulomb model for predicting ductile fracture initiation at low stress triaxialities, Int. J. Solid. Struct. 67 (2015) 40-55.
DOI: 10.1016/j.ijsolstr.2015.02.024
Google Scholar
[12]
L. Mu, y. Zang, Y. Wang, X. L. Li, P. M. A. Stemler, Phenomenological uncoupled ductile fracture model considering different void deformation modes for sheet metal forming, Int. J. Mech. Sci. 141 (2018) 408-423.
DOI: 10.1016/j.ijmecsci.2018.04.025
Google Scholar
[13]
R. Li, Z. Zheng, M. Zhan H. Zhang, X. Cui, Y. Lie, Fracture prediction for metal sheet deformation under different stress states with uncoupled ductile fracture criteria, J. Manu. Proc. 73 (2022) 531-543.
DOI: 10.1016/j.jmapro.2021.11.023
Google Scholar
[14]
N. Park, H. Huh, J. W. Yoon, Anisotropic fracture forming limit diagram considering non-directionality of the equi-biaxial fracture strain, Int. J. Solid. Struct. 151 (2018) 181-194.
DOI: 10.1016/j.ijsolstr.2018.01.009
Google Scholar
[15]
H. Quach, J.J. Kim, D.T. Nguyen, Y.S. Kim, Uncoupled ductile fracture criterion considering secondary void band behaviors for failure prediction in sheet metal forming, Int. J. Mech. Sci. 169 (2020) 105297.
DOI: 10.1016/j.ijmecsci.2019.105297
Google Scholar
[16]
T. Jantarasricha, K. Chongbunwatana, S. Panich, Fracture Analysis of Sheet Aluminum Alloy AA2024-T3 Through a Complex-Loading Cross-Die Test, Int. J. App. Mech. 15. (2023) 2250093.
DOI: 10.1142/s1758825122500934
Google Scholar
[17]
R. Hashemi, K. Abrinia, Analysis of the extended stress-based forming limit curve considering the effects of strain path and through-thickness normal stress, Mater. Des. 54 (2014) 670-677.
DOI: 10.1016/j.matdes.2013.08.023
Google Scholar
[18]
H. Wang Y. Yu, H. Fei, W. Min, Experimental and theoretical investigations of the forming limit of 5754O aluminum alloy sheet under different combined loading paths, Int. J. Mech. Sci. 133 (2017) 147-166.
DOI: 10.1016/j.ijmecsci.2017.08.040
Google Scholar
[19]
R. Hill, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 193(1948) 281-297.
Google Scholar