[1]
E. M. Ahmed, Hydrogel: Preparation, characterization, and applications: A review, J. Adv. Res. 6 (2015) 105-121.
Google Scholar
[2]
S. Subbulakshmi, A. Selvarani, V. Sanjivkumar, K. Baskar, Land configurations and drought mitigation practices to improve productivity and profitability of blackgram (Vigna mungo) under moisture stress conditions, The. Ind. J. Agri. Sci. 94 (2024) 96-99.
DOI: 10.56093/ijas.v94i1.142855
Google Scholar
[3]
A. Kalhapure, R. Kumar, V. P. Singh, D. S. Pandey, Hydrogels: A boon for increasing agricultural productivity in water-stressed environment, Curr. Sci. 111 (2016) 1773-1779.
DOI: 10.18520/cs/v111/i11/1773-1779
Google Scholar
[4]
J. Ma, X. Li, Y. Bao, Advances in cellulose-based superabsorbent hydrogels, RSC. Adv. 5 (2015) 59745-59757.
DOI: 10.1039/c5ra08522e
Google Scholar
[5]
H. Omidian, A. Akhzarmehr, S. D. Chowdhury, Advancements in cellulose-based superabsorbent hydrogels: sustainable solutions across industries, Gels. 10 (2024) 1-27.
DOI: 10.3390/gels10030174
Google Scholar
[6]
E. Caló, V. V. Khutoryanskiy, Biomedical applications of hydrogels: A review of patents and commercial products, J. Eur. Poly. 65 (2015) 252-267.
DOI: 10.1016/j.eurpolymj.2014.11.024
Google Scholar
[7]
Z. Tariq, D. N. Iqbal, M. Rizwan, M. Ahmad, M. Faheem, M. Ahmed, Significance of biopolymer-based hydrogels and their applications in agriculture: A review in perspective of synthesis and their degree of swelling for water holding, RSC. Adv. 13 (2023) 24731-24754.
DOI: 10.1039/d3ra03472k
Google Scholar
[8]
T. A. Adjuik, S. E. Nokes, M. D. Montross, O. Wendroth, the impacts of bio-based and synthetic hydrogels on soil hydraulic properties: A review, Polymers. 14 (2022) 1-23.
DOI: 10.3390/polym14214721
Google Scholar
[9]
H. Seddiqi et al., Cellulose and its derivatives: towards biomedical applications, Spri. Sci. Buss. Med. 28 (2021) 1893–1931.
Google Scholar
[10]
D. Trache, A. F. Tarchoun, M. Derradji, T. S. Hamidon, N. Masruchin, N. Brosse, M. H. Hussin, Nanocellulose: from fundamentals to advanced applications, Front. Chem. 8 (2020) 1-33.
DOI: 10.3389/fchem.2020.00392
Google Scholar
[11]
S. P. Phalle, P. B. Choudhari, S. P. Choudhari, D. A. Bhagwat, A. M. Kadam, V. L. Gaikwad, Microwave-assisted grafting of acrylamide on a natural xylan gum for controlled drug delivery, Poly. Bull. 81 (2024) 2583–2600.
DOI: 10.1007/s00289-023-04853-y
Google Scholar
[12]
D. Lavanya, P.K. Kulkarni, M. Dixit, P. K. Raavi, L. N. V. Krishna, Sources of cellulose and their applications – A review. Intl. J. Drug. Form. Res. 2 (2011) 19-38.
Google Scholar
[13]
N. I. Ramli, B. Y. Tien, B. Y. Hui, W. K. Han, The effects of soaking time on the quality and properties of durian (Durio zibethinus) seed gum: A mini review, Malay. J. Analyc. Sci. 26 (2022) 944 – 952.
Google Scholar
[14]
C. Pujiastuti, A. A. Muharomah, Bioplastic manufacturing from durian rind cellulose using the phase inversion method, in Proceedings of 4th International Conference Eco-Innovation in Science, Engineering, and Technology, December 15 (2023) 1-11.
DOI: 10.11594/nstp.2023.3601
Google Scholar
[15]
S. Distantina, G. S. Anggreini, F. A. Al Kamal, M. Kaavessina, Fadilah, Effect of potassium peroxodisulphate and microwave power on hydrogel character based on banana peel waste using microwave grafting method, Eq. J. Chem. Eng. 7 (2023) 1-8.
DOI: 10.20961/equilibrium.v7i1.67919
Google Scholar
[16]
S. Singh, S. Bhardwaj, P. Tiwari, K. Dev, K. Ghosh, P. K. Maji, Recent advances in cellulose nanocrystals-based sensors: A review, Mater. Adv. 5 (2024) 2622-2654.
DOI: 10.1039/d3ma00601h
Google Scholar
[17]
S. Amin, S. Damayanti, S. Ibrahim, Synthesis and characterization molecularly imprinted polymers for analysis of dimethylamylamine using acrylamide as monomer functional, J. Farm. Ind. 8 (2018) 76-84.
DOI: 10.22435/jki.v8i2.330
Google Scholar
[18]
A. Sand A. Vyas, Superabsorbent polymer based on guar gum-graft-acrylamide: synthesis and characterization, J. Poly. Res. 27 (2020) 1-10.
DOI: 10.1007/s10965-019-1951-x
Google Scholar
[19]
N. A. Yusoff, N. M. Shahib, N. A. Zainol, K. S. A. Sohaimi, N. M. Rohaizad, E. A. Wikurendra, A. Andini, A. Syafiuddin, Microwave-assisted synthesis and characterization of polyacrylamide grafted cellulose derived from waste newspaper for surface water treatment, Des. Wtr. Treat. 259 (2022) 90-97.
DOI: 10.5004/dwt.2022.28464
Google Scholar
[20]
S. Mishra, G. U. Rani, G. Sen, Microwave initiated synthesis and application of polyacrylic acid grafted carboxymethyl cellulose, Carbo. Polym. 87 (2012) 2255-2262.
DOI: 10.1016/j.carbpol.2011.10.057
Google Scholar
[21]
C. E. Okonkwo, S. Z. Hussain, S. Manzoor, B. Naseer, A. E. Taiwo, A comprehensive review on the use of deep eutectic solvents for biomass processing, and the synergistic coupling with physical technology and biological method, J. Bio. Tech. Rep. 23 (2023) 101577.
DOI: 10.1016/j.biteb.2023.101577
Google Scholar
[22]
X. Fu, H. Ji, X. Liu, and W. Zhu, Lignin-containing fibers extraction and hydrogel preparation for fiber-optic relative humidity sensor fabrication, Ind. Crops. Prod. 173 (2021) 114112.
DOI: 10.1016/j.indcrop.2021.114112
Google Scholar
[23]
X. Li, L. G. Tabil, S. Panigrahi, Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A review, J. Polym, Env. 15 (2007) 25–33.
DOI: 10.1007/s10924-006-0042-3
Google Scholar
[24]
L. Maleki, U. Edlund, A. C. Albertsson, Unrefined wood hydrolysates are viable reactants for the reproducible synthesis of highly swellable hydrogels, Carbohydr. Polym. 108 (2014) 281-290.
DOI: 10.1016/j.carbpol.2014.02.060
Google Scholar
[25]
T. W. Kurniawan, H. Sulistyarti, B. Rumhayati, A. Sabarudin, Combination of the alkali-bleaching-sodium sulfite ionic solutions treatment toward cellulose isolation and its characteristics from Palm Empty Bunches (PEB) (Study: Comparison with cellulose from different biomass and methods), Moro. J. Chem. 12 (2024) 21-42.
Google Scholar
[26]
S. Davoodi, M. Al-Shargabi, D. A. Wood, V. S. Rukavishnikov, K. M. Minaev, Synthetic polymers: A review of applications in drilling fluids, KeAi. Comm. 21 (2024) 475-518.
DOI: 10.1016/j.petsci.2023.08.015
Google Scholar
[27]
H. He, F. An, Y. Wang, W. Wu, Z. Huang, H. Song, Effects of pretreatment, NaOH concentration, and extraction temperature on the cellulose from Lophatherum gracile Brongn, Int. J. Biol. Macromol. 190 (2021) 810–818.
DOI: 10.1016/j.ijbiomac.2021.09.041
Google Scholar
[28]
P. Ghosh, D. Dev, A. K. Samanta, Effect of graft copolymerization of mixtures of acrylamide and methyl methacrylate on mechanical properties of jute fibers of different compositions, J. Appl. Polym. Sci. 68 (1998) 1139-1147.
DOI: 10.1002/(sici)1097-4628(19980516)68:7<1139::aid-app11>3.0.co;2-t
Google Scholar
[29]
A. Patel, Synthesis of acrylamide grafted xanthan gum by microwave assisted method: FTIR characteristics and acute oral toxicity study, Intl. J. Pharm. Sci. 7 (2023) 129-145.
Google Scholar
[30]
M. P. N. Matovanni, S. Distantina, M. Kaavessina, Synthesis of cassava starch-grafted polyacrylamide hydrogel by microwave-assisted method for polymer flooding, Ind. J. Chem. 2 (2022) 791-804.
DOI: 10.22146/ijc.71343
Google Scholar
[31]
S. Jha, R. Malviya, S. Fuloria, S. Sundram, V. Subramaniyan, M. Sekar, P. K. Sharma, S. Chakravarthi, Y. S. Wu, N. Mishra, D. U. Meenakshi, V. Bhalla, S. Djearamane, N. K. Fuloria, Characterization of microwave-controlled polyacrylamide graft copolymer of tamarind seed polysaccharide, Polymers. 14 (2022) 1037.
DOI: 10.3390/polym14051037
Google Scholar
[32]
T. K. Giri, S. Pure, D. K. Tripathi, Synthesis of graft copolymers of acrylamide for locust bean gum using microwave energy: Swelling behavior, flocculation characteristics and acute toxicity study, Polimeros. 25 (2015) 168-174.
DOI: 10.1590/0104-1428.1717
Google Scholar
[33]
T. Sehgal, S. Rattan, Synthesis, characterization and swelling characteristics of graft copolymerized isotactic polypropylene film, Int. J. Polym. Sci. 1 (2010) 1-9.
DOI: 10.1155/2010/147581
Google Scholar