Hydrogel Synthesis from Durian Rind Cellulose with Microwave Grafting Method: A Study of the Effect of Cellulose Preparation Method and Microwave Irradiation Time

Article Preview

Abstract:

This research explored the synthesis of hydrogels from acrylamide-grafted durian rind cellulose using a microwave-assisted method. The objective of this research was to investigate the effect of cellulose preparation and duration of microwave irradiation on the swelling properties of the obtained bead hydrogel. The mixture of cellulose, acrylamide solution, and potassium peroxydisulfate as the initiator agent was irradiated by microwave at 640 W. FTIR analysis showed that acrylamide was grafted into durian rind cellulose successfully. This study found that bead gels from durian rind cellulose, which underwent delignification and bleaching methods, exhibited a greater swelling capacity (855%) after 180 minutes than bead gels from durian rind cellulose without these methods (807%). The optimum microwave irradiation time was found to be 540 s, resulting in a maximum swelling capacity of 676%.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1173)

Pages:

37-46

Citation:

Online since:

December 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. M. Ahmed, Hydrogel: Preparation, characterization, and applications: A review, J. Adv. Res. 6 (2015) 105-121.

Google Scholar

[2] S. Subbulakshmi, A. Selvarani, V. Sanjivkumar, K. Baskar, Land configurations and drought mitigation practices to improve productivity and profitability of blackgram (Vigna mungo) under moisture stress conditions, The. Ind. J. Agri. Sci. 94 (2024) 96-99.

DOI: 10.56093/ijas.v94i1.142855

Google Scholar

[3] A. Kalhapure, R. Kumar, V. P. Singh, D. S. Pandey, Hydrogels: A boon for increasing agricultural productivity in water-stressed environment, Curr. Sci. 111 (2016) 1773-1779.

DOI: 10.18520/cs/v111/i11/1773-1779

Google Scholar

[4] J. Ma, X. Li, Y. Bao, Advances in cellulose-based superabsorbent hydrogels, RSC. Adv. 5 (2015) 59745-59757.

DOI: 10.1039/c5ra08522e

Google Scholar

[5] H. Omidian, A. Akhzarmehr, S. D. Chowdhury, Advancements in cellulose-based superabsorbent hydrogels: sustainable solutions across industries, Gels. 10 (2024) 1-27.

DOI: 10.3390/gels10030174

Google Scholar

[6] E. Caló, V. V. Khutoryanskiy, Biomedical applications of hydrogels: A review of patents and commercial products, J. Eur. Poly. 65 (2015) 252-267.

DOI: 10.1016/j.eurpolymj.2014.11.024

Google Scholar

[7] Z. Tariq, D. N. Iqbal, M. Rizwan, M. Ahmad, M. Faheem, M. Ahmed, Significance of biopolymer-based hydrogels and their applications in agriculture: A review in perspective of synthesis and their degree of swelling for water holding, RSC. Adv. 13 (2023) 24731-24754.

DOI: 10.1039/d3ra03472k

Google Scholar

[8] T. A. Adjuik, S. E. Nokes, M. D. Montross, O. Wendroth, the impacts of bio-based and synthetic hydrogels on soil hydraulic properties: A review, Polymers. 14 (2022) 1-23.

DOI: 10.3390/polym14214721

Google Scholar

[9] H. Seddiqi et al., Cellulose and its derivatives: towards biomedical applications, Spri. Sci. Buss. Med. 28 (2021) 1893–1931.

Google Scholar

[10] D. Trache, A. F. Tarchoun, M. Derradji, T. S. Hamidon, N. Masruchin, N. Brosse, M. H. Hussin, Nanocellulose: from fundamentals to advanced applications, Front. Chem. 8 (2020) 1-33.

DOI: 10.3389/fchem.2020.00392

Google Scholar

[11] S. P. Phalle, P. B. Choudhari, S. P. Choudhari, D. A. Bhagwat, A. M. Kadam, V. L. Gaikwad, Microwave-assisted grafting of acrylamide on a natural xylan gum for controlled drug delivery, Poly. Bull. 81 (2024) 2583–2600.

DOI: 10.1007/s00289-023-04853-y

Google Scholar

[12] D. Lavanya, P.K. Kulkarni, M. Dixit, P. K. Raavi, L. N. V. Krishna, Sources of cellulose and their applications – A review. Intl. J. Drug. Form. Res. 2 (2011) 19-38.

Google Scholar

[13] N. I. Ramli, B. Y. Tien, B. Y. Hui, W. K. Han, The effects of soaking time on the quality and properties of durian (Durio zibethinus) seed gum: A mini review, Malay. J. Analyc. Sci. 26 (2022) 944 – 952.

Google Scholar

[14] C. Pujiastuti, A. A. Muharomah, Bioplastic manufacturing from durian rind cellulose using the phase inversion method, in Proceedings of 4th International Conference Eco-Innovation in Science, Engineering, and Technology, December 15 (2023) 1-11.

DOI: 10.11594/nstp.2023.3601

Google Scholar

[15] S. Distantina, G. S. Anggreini, F. A. Al Kamal, M. Kaavessina, Fadilah, Effect of potassium peroxodisulphate and microwave power on hydrogel character based on banana peel waste using microwave grafting method, Eq. J. Chem. Eng. 7 (2023) 1-8.

DOI: 10.20961/equilibrium.v7i1.67919

Google Scholar

[16] S. Singh, S. Bhardwaj, P. Tiwari, K. Dev, K. Ghosh, P. K. Maji, Recent advances in cellulose nanocrystals-based sensors: A review, Mater. Adv. 5 (2024) 2622-2654.

DOI: 10.1039/d3ma00601h

Google Scholar

[17] S. Amin, S. Damayanti, S. Ibrahim, Synthesis and characterization molecularly imprinted polymers for analysis of dimethylamylamine using acrylamide as monomer functional, J. Farm. Ind. 8 (2018) 76-84.

DOI: 10.22435/jki.v8i2.330

Google Scholar

[18] A. Sand A. Vyas, Superabsorbent polymer based on guar gum-graft-acrylamide: synthesis and characterization, J. Poly. Res. 27 (2020) 1-10.

DOI: 10.1007/s10965-019-1951-x

Google Scholar

[19] N. A. Yusoff, N. M. Shahib, N. A. Zainol, K. S. A. Sohaimi, N. M. Rohaizad, E. A. Wikurendra, A. Andini, A. Syafiuddin, Microwave-assisted synthesis and characterization of polyacrylamide grafted cellulose derived from waste newspaper for surface water treatment, Des. Wtr. Treat. 259 (2022) 90-97.

DOI: 10.5004/dwt.2022.28464

Google Scholar

[20] S. Mishra, G. U. Rani, G. Sen, Microwave initiated synthesis and application of polyacrylic acid grafted carboxymethyl cellulose, Carbo. Polym. 87 (2012) 2255-2262.

DOI: 10.1016/j.carbpol.2011.10.057

Google Scholar

[21] C. E. Okonkwo, S. Z. Hussain, S. Manzoor, B. Naseer, A. E. Taiwo, A comprehensive review on the use of deep eutectic solvents for biomass processing, and the synergistic coupling with physical technology and biological method, J. Bio. Tech. Rep. 23 (2023) 101577.

DOI: 10.1016/j.biteb.2023.101577

Google Scholar

[22] X. Fu, H. Ji, X. Liu, and W. Zhu, Lignin-containing fibers extraction and hydrogel preparation for fiber-optic relative humidity sensor fabrication, Ind. Crops. Prod. 173 (2021) 114112.

DOI: 10.1016/j.indcrop.2021.114112

Google Scholar

[23] X. Li, L. G. Tabil, S. Panigrahi, Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A review, J. Polym, Env. 15 (2007) 25–33.

DOI: 10.1007/s10924-006-0042-3

Google Scholar

[24] L. Maleki, U. Edlund, A. C. Albertsson, Unrefined wood hydrolysates are viable reactants for the reproducible synthesis of highly swellable hydrogels, Carbohydr. Polym. 108 (2014) 281-290.

DOI: 10.1016/j.carbpol.2014.02.060

Google Scholar

[25] T. W. Kurniawan, H. Sulistyarti, B. Rumhayati, A. Sabarudin, Combination of the alkali-bleaching-sodium sulfite ionic solutions treatment toward cellulose isolation and its characteristics from Palm Empty Bunches (PEB) (Study: Comparison with cellulose from different biomass and methods), Moro. J. Chem. 12 (2024) 21-42.

Google Scholar

[26] S. Davoodi, M. Al-Shargabi, D. A. Wood, V. S. Rukavishnikov, K. M. Minaev, Synthetic polymers: A review of applications in drilling fluids, KeAi. Comm. 21 (2024) 475-518.

DOI: 10.1016/j.petsci.2023.08.015

Google Scholar

[27] H. He, F. An, Y. Wang, W. Wu, Z. Huang, H. Song, Effects of pretreatment, NaOH concentration, and extraction temperature on the cellulose from Lophatherum gracile Brongn, Int. J. Biol. Macromol. 190 (2021) 810–818.

DOI: 10.1016/j.ijbiomac.2021.09.041

Google Scholar

[28] P. Ghosh, D. Dev, A. K. Samanta, Effect of graft copolymerization of mixtures of acrylamide and methyl methacrylate on mechanical properties of jute fibers of different compositions, J. Appl. Polym. Sci. 68 (1998) 1139-1147.

DOI: 10.1002/(sici)1097-4628(19980516)68:7<1139::aid-app11>3.0.co;2-t

Google Scholar

[29] A. Patel, Synthesis of acrylamide grafted xanthan gum by microwave assisted method: FTIR characteristics and acute oral toxicity study, Intl. J. Pharm. Sci. 7 (2023) 129-145.

Google Scholar

[30] M. P. N. Matovanni, S. Distantina, M. Kaavessina, Synthesis of cassava starch-grafted polyacrylamide hydrogel by microwave-assisted method for polymer flooding, Ind. J. Chem. 2 (2022) 791-804.

DOI: 10.22146/ijc.71343

Google Scholar

[31] S. Jha, R. Malviya, S. Fuloria, S. Sundram, V. Subramaniyan, M. Sekar, P. K. Sharma, S. Chakravarthi, Y. S. Wu, N. Mishra, D. U. Meenakshi, V. Bhalla, S. Djearamane, N. K. Fuloria, Characterization of microwave-controlled polyacrylamide graft copolymer of tamarind seed polysaccharide, Polymers. 14 (2022) 1037.

DOI: 10.3390/polym14051037

Google Scholar

[32] T. K. Giri, S. Pure, D. K. Tripathi, Synthesis of graft copolymers of acrylamide for locust bean gum using microwave energy: Swelling behavior, flocculation characteristics and acute toxicity study, Polimeros. 25 (2015) 168-174.

DOI: 10.1590/0104-1428.1717

Google Scholar

[33] T. Sehgal, S. Rattan, Synthesis, characterization and swelling characteristics of graft copolymerized isotactic polypropylene film, Int. J. Polym. Sci. 1 (2010) 1-9.

DOI: 10.1155/2010/147581

Google Scholar