Modification of Carbon Nitride Nanosheet Catalyst by Zirconium (Zr) as Doping: Potential Photocatalyst for Conversion of Glycerol to Hydrogen

Article Preview

Abstract:

Carbon nitride (C3N4) has gained attention from scientists due to its potential applications as a catalyst for organic synthesis, electrodes, photocatalysts, and hydrogen storage materials. Using C3N4 as a photocatalyst for the glycerol-to-hydrogen reaction could offer many development advantages. Pure C3N4 has several shortcomings as a photocatalyst, so modifications are needed to enhance its properties and characteristics. Converting C3N4 into nanosheet form and adding Zirconium doping are solutions to improve its performance. The nanosheet form increases the surface area by creating thin sheet structures, while Zirconium doping is chosen because it can improve the conductivity and mechanical properties of the catalyst. This research focuses on characterizing catalysts with varying doping levels (5%, 10%, 15%, 20%, and 27%). Tests conducted include BET analysis, XRD, and UV-Vis DRS. Results show that the sample with 20% doping performs the best, with a specific surface area of 46.087 m²/g. Crystallinity was assessed with values of 2Ө = 27.8426°, 31.6712°, 45.4188°, and 56.4368°. The band gap energy was determined to be 3.067 eV. These findings are then compared with previous research.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1173)

Pages:

123-132

Citation:

Online since:

December 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. K. Jaiswal et al., "Renewable and sustainable clean energy development and impact on social, economic, and environmental health," Energy Nexus, vol. 7, no. April, p.100118, 2022.

DOI: 10.1016/j.nexus.2022.100118

Google Scholar

[2] S. Mehmood, K. Zaman, S. Khan, Z. Ali, and H. ur R. Khan, "The role of green industrial transformation in mitigating carbon emissions: Exploring the channels of technological innovation and environmental regulation," Energy Built Environ., vol. 5, no. 3, p.464–479, 2024.

DOI: 10.1016/j.enbenv.2023.03.001

Google Scholar

[3] X. Dai et al., "Highly efficient hydrogen evolution catalysis by MoS2-MoN/carbonitride composites derived from tetrathiomolybdate/polymer hybrids," Chem. Eng. Sci., vol. 134, p.572–580, 2015.

DOI: 10.1016/j.ces.2015.05.065

Google Scholar

[4] J. Incer-Valverde, A. Korayem, G. Tsatsaronis, and T. Morosuk, "'Colors' of hydrogen: Definitions and carbon intensity," Energy Convers. Manag., vol. 291, no. June, p.117294, 2023.

DOI: 10.1016/j.enconman.2023.117294

Google Scholar

[5] A. Ajanovic, M. Sayer, and R. Haas, "The economics and the environmental benignity of different colors of hydrogen," Int. J. Hydrogen Energy, vol. 47, no. 57, p.24136–24154, 2022.

DOI: 10.1016/j.ijhydene.2022.02.094

Google Scholar

[6] J. Zhang et al., "Insight into synergistic enhancement of photothermal catalytic hydrogen production by plasmonic Au-NP/TiO2 in the presence of glycerol," Energy Convers. Manag., vol. 277, no. December 2022, p.116626, 2023.

DOI: 10.1016/j.enconman.2022.116626

Google Scholar

[7] M. M. R. de Oliveira, E. J. R. Sousa, A. M. P. da Silva, R. dos S. Araújo, and B. C. B. Salgado, "Construction of photocatalytic plates for hydrogen production from photoreforming of glycerol," Int. J. Hydrogen Energy, vol. 48, no. 74, p.28792–28802, 2023.

DOI: 10.1016/j.ijhydene.2023.04.110

Google Scholar

[8] M. Alhaddad, R. M. Navarro, M. A. Hussein, and R. M. Mohamed, "Visible light production of hydrogen from glycerol over Cu2O-gC3N4 nanocomposites with enhanced photocatalytic efficiency," J. Mater. Res. Technol., vol. 9, no. 6, p.15335–15345, 2020.

DOI: 10.1016/j.jmrt.2020.10.093

Google Scholar

[9] A. K. Wahab and H. Idriss, "Study of the photocatalytic reforming and oxidation of Glycerol over Ag–Pd/TiO2," Int. J. Hydrogen Energy, vol. 52, p.159–171, 2023.

DOI: 10.1016/j.ijhydene.2023.05.344

Google Scholar

[10] M. Anitha, S. K. Kamarudin, and N. T. Kofli, "The potential of glycerol as a value-added commodity," Chem. Eng. J., vol. 295, p.119–130, 2016.

DOI: 10.1016/j.cej.2016.03.012

Google Scholar

[11] R. Kalla, S. Sumarno, and M. Mahfud, "Degradasi Gliserol Katalitik Menggunakan Tanduk Getar," p.52–57, 2016.

Google Scholar

[12] Y. Liu et al., "Hollow tubular carbon doping graphitic carbon nitride with adjustable structure for highly enhanced photocatalytic hydrogen production," Carbon N. Y., vol. 182, p.287–296, 2021.

DOI: 10.1016/j.carbon.2021.06.008

Google Scholar

[13] M. Alhaddad, R. M. Navarro, M. A. Hussein, and R. M. Mohamed, "Bi2O3/ g-C3N4 nanocomposites as proficient photocatalysts for hydrogen generation from aqueous glycerol solutions beneath visible light," Ceram. Int., vol. 46, no. 16, p.24873–24881, 2020.

DOI: 10.1016/j.ceramint.2020.06.271

Google Scholar

[14] L. Chen et al., "Nitrogen defects/boron dopants engineered tubular carbon nitride for efficient tetracycline hydrochloride photodegradation and hydrogen evolution," Appl. Catal. B Environ., vol. 303, no. October 2021, p.120932, 2022.

DOI: 10.1016/j.apcatb.2021.120932

Google Scholar

[15] S. Wang, X. Wang, B. Liu, X. Xiao, L. Wang, and W. Huang, "Boosting the photocatalytic hydrogen production performance of graphitic carbon nitride nanosheets by tailoring the cyano groups," J. Colloid Interface Sci., vol. 610, p.495–503, 2022.

DOI: 10.1016/j.jcis.2021.11.098

Google Scholar

[16] X. Xu et al., "Photocatalytic reforming of biomass for hydrogen production over ZnS nanoparticles modified carbon nitride nanosheets," J. Colloid Interface Sci., vol. 555, p.22–30, 2019.

DOI: 10.1016/j.jcis.2019.07.066

Google Scholar

[17] R. Zhang, S. Niu, X. Zhang, Z. Jiang, J. Zheng, and C. Guo, "Combination of experimental and theoretical investigation on Ti-doped g-C3N4 with improved photo-catalytic activity," Appl. Surf. Sci., vol. 489, no. January, p.427–434, 2019.

DOI: 10.1016/j.apsusc.2019.05.362

Google Scholar

[18] T. Song, L. Hou, B. Long, A. Ali, and G. J. Deng, "Constructing ultralong hollow chain-ball-like carbon nitride implanted with oxygen for superior visible-light photocatalytic hydrogen production," J. Alloys Compd., vol. 857, p.157609, 2021.

DOI: 10.1016/j.jallcom.2020.157609

Google Scholar

[19] E. Mari, P. C. Tsai, M. Eswaran, and V. K. Ponnusamy, "Efficient electro-catalytic oxidation of ethylene glycol using flower-like graphitic carbon nitride/iron oxide/palladium nanocomposite for fuel cell application," Fuel, vol. 280, no. 100, p.118646, 2020.

DOI: 10.1016/j.fuel.2020.118646

Google Scholar

[20] M. Pourmadadi et al., "Graphitic carbon nitride (g-C3N4) synthesis methods, surface functionalization, and drug delivery applications: A review," J. Drug Deliv. Sci. Technol., vol. 79, no. August 2022, p.104001, 2023.

DOI: 10.1016/j.jddst.2022.104001

Google Scholar

[21] J. Nowicki, J. Lach, M. Organek, and E. Sabura, "Transesterification of rapeseed oil to biodiesel over Zr-dopped MgAl hydrotalcites," Appl. Catal. A Gen., vol. 524, p.17–24, 2016.

DOI: 10.1016/j.apcata.2016.05.015

Google Scholar

[22] T. Faiz, T. Nabila, and A. W. Budiman, "Sintesis Metal-Doped Carbon Nitride Nanosheets sebagai Pengurai Limbah Pewarna secara Fotokatalisis," Equilib. J. Chem. Eng., vol. 6, no. 1, p.50–56, 2022.

DOI: 10.20961/equilibrium.v6i1.62258

Google Scholar

[23] X. Wen, N. Sun, Y. Tan, W. Wang, C. Yan, and H. Wang, "One-step synthesis of petals-like graphitic carbon nitride nanosheets with triazole defects for highly improved photocatalytic hydrogen production," Int. J. Hydrogen Energy, vol. 44, no. 5, p.2675–2684, 2019.

DOI: 10.1016/j.ijhydene.2018.11.117

Google Scholar

[24] A. Furqonita, A. B. Aritonang, and M. Agus Wibowo, "Sintesis TiO2 Terdoping Bi 3+ Dan Uji Aktivitas Fotokatalisis Antibakteri E.coli Dengan Bantuan Sinar Tampak," Indones. J. Pure Appl. Chem., vol. 4, no. 4, p.69–80, 2021, [Online]. Available: http://jurnal.untan.ac.id/index.php/IJoPAC

DOI: 10.26418/indonesian.v4i2.46976

Google Scholar

[25] Y. Wang et al., "TiCN MXene hybrid BCN nanotubes with trace level Co as an efficient ORR electrocatalyst for Zn-air batteries," Int. J. Hydrogen Energy, vol. 47, no. 48, p.20894–20904, 2022.

DOI: 10.1016/j.ijhydene.2022.04.211

Google Scholar

[26] T. Tian, Z. Huang, Y. Du, and L. Zhao, "Efficient degradation of tetracycline in a photo-Fenton system constructed by combining MOF-derived Fe2O3/C/In2O3 heterojunction with vitamin C," J. Alloys Compd., vol. 968, no. June, p.172048, 2023.

DOI: 10.1016/j.jallcom.2023.172048

Google Scholar

[27] D. G. Tong, W. Chu, Y. Y. Luo, X. Y. Ji, and Y. He, "Effect of crystallinity on the catalytic performance of amorphous Co-B particles prepared from cobalt nitrate and potassium borohydride in the cinnamaldehyde hydrogenation," J. Mol. Catal. A Chem., vol. 265, no. 1–2, p.195–204, 2007.

DOI: 10.1016/j.molcata.2006.10.032

Google Scholar

[28] C. Wichasilp, A. Phuruangrat, and S. Thongtem, "Influence of pH on the synthesis ZnO nanorods and photocatalytic hydrogen production from glycerol solution," J. Indian Chem. Soc., vol. 99, no. 6, p.100472, 2022.

DOI: 10.1016/j.jics.2022.100472

Google Scholar

[29] G. Iervolino et al., "Photocatalytic production of hydrogen and methane from glycerol reforming over Pt/TiO2–Nb2O5," Int. J. Hydrogen Energy, vol. 46, no. 78, p.38678–38691, 2021.

DOI: 10.1016/j.ijhydene.2021.09.111

Google Scholar

[30] A. Thomas et al., "Graphitic carbon nitride materials: Variation of structure and morphology and their use as metal-free catalysts," J. Mater. Chem., vol. 18, no. 41, p.4893–4908, 2008.

DOI: 10.1039/b800274f

Google Scholar

[31] A. W. Budiman, B. S. T. Sembodo, A. Alviansyah, and I. B. S. Putri, "Application of titanium doped g-C3N4 for the degradation of toxic dyes in textiles wastewater," AIP Conf. Proc., vol. 2217, no. April, 2020.

DOI: 10.1063/5.0000663

Google Scholar

[32] A. W. Budiman, A. D. Susanti, F. Mubarok, and R. I. Rahmawati, "Tofu liquid-waste photodegradation using g- C3N4," J. Chem. Phys., vol. 150, no. 22, p.1–5, 2019.

DOI: 10.1063/1.5098257

Google Scholar

[33] Q. Lin, L. Li, S. Liang, M. Liu, J. Bi, and L. Wu, "Applied Catalysis B : Environmental Efficient synthesis of monolayer carbon nitride 2D nanosheet with tunable concentration and enhanced visible-light photocatalytic activities," vol. 163, p.135–142, 2015.

DOI: 10.1016/j.apcatb.2014.07.053

Google Scholar

[34] S. Karim, Pardoyo, and A. Subagyo, "Sintesis dan Karakterisasi TiO2 Terdoping Nitrogen (N-Doped TiO2) dengan Metode Sol–Gel," J. Kim. Sains dan Apl., vol. 19, no. 3, p.111–117, 2016.

DOI: 10.14710/jksa.19.2.63-67

Google Scholar

[35] E. Iftitah, Muchalal, W. Trisunaryanti, and R. Armunanto, "Karakterisasi Dan Aktivitas Katalitik Berbagai Variasi Komposisi Katalis Ni Dan Znbr2 Dalam Γ-Al2O3 Untuk Isomerisasi Dan Hidrogenasi (R)-(+)-Sitronelal," J. MIPA, vol. 36, no. 1, p.60–69, 2013.

Google Scholar

[36] S. Taylor, M. Mehta, and A. Samokhvalov, "Production of hydrogen by glycerol photoreforming using binary nitrogen-metal-promoted N-M-TiO2 photocatalysts," ChemPhysChem, vol. 15, no. 5, p.942–949, 2014.

DOI: 10.1002/cphc.201301140

Google Scholar

[37] C. Zhang et al., "Dual functional S-scheme ZnIn2S4/crystalline polymeric carbon nitride (ZIS/CPCN) heterojunction for efficient photocatalytic hydrogen evolution and degradation of levofloxacin," Chem. Eng. J., vol. 495, no. June, p.153563, 2024.

DOI: 10.1016/j.cej.2024.153563

Google Scholar

[38] T. W. P. Seadira, C. M. Masuku, and M. S. Scurrell, "Solar photocatalytic glycerol reforming for hydrogen production over Ternary Cu/THS/graphene photocatalyst: Effect of Cu and graphene loading," Renew. Energy, vol. 156, p.84–97, 2020.

DOI: 10.1016/j.renene.2020.04.020

Google Scholar