[1]
K. K. Jaiswal et al., "Renewable and sustainable clean energy development and impact on social, economic, and environmental health," Energy Nexus, vol. 7, no. April, p.100118, 2022.
DOI: 10.1016/j.nexus.2022.100118
Google Scholar
[2]
S. Mehmood, K. Zaman, S. Khan, Z. Ali, and H. ur R. Khan, "The role of green industrial transformation in mitigating carbon emissions: Exploring the channels of technological innovation and environmental regulation," Energy Built Environ., vol. 5, no. 3, p.464–479, 2024.
DOI: 10.1016/j.enbenv.2023.03.001
Google Scholar
[3]
X. Dai et al., "Highly efficient hydrogen evolution catalysis by MoS2-MoN/carbonitride composites derived from tetrathiomolybdate/polymer hybrids," Chem. Eng. Sci., vol. 134, p.572–580, 2015.
DOI: 10.1016/j.ces.2015.05.065
Google Scholar
[4]
J. Incer-Valverde, A. Korayem, G. Tsatsaronis, and T. Morosuk, "'Colors' of hydrogen: Definitions and carbon intensity," Energy Convers. Manag., vol. 291, no. June, p.117294, 2023.
DOI: 10.1016/j.enconman.2023.117294
Google Scholar
[5]
A. Ajanovic, M. Sayer, and R. Haas, "The economics and the environmental benignity of different colors of hydrogen," Int. J. Hydrogen Energy, vol. 47, no. 57, p.24136–24154, 2022.
DOI: 10.1016/j.ijhydene.2022.02.094
Google Scholar
[6]
J. Zhang et al., "Insight into synergistic enhancement of photothermal catalytic hydrogen production by plasmonic Au-NP/TiO2 in the presence of glycerol," Energy Convers. Manag., vol. 277, no. December 2022, p.116626, 2023.
DOI: 10.1016/j.enconman.2022.116626
Google Scholar
[7]
M. M. R. de Oliveira, E. J. R. Sousa, A. M. P. da Silva, R. dos S. Araújo, and B. C. B. Salgado, "Construction of photocatalytic plates for hydrogen production from photoreforming of glycerol," Int. J. Hydrogen Energy, vol. 48, no. 74, p.28792–28802, 2023.
DOI: 10.1016/j.ijhydene.2023.04.110
Google Scholar
[8]
M. Alhaddad, R. M. Navarro, M. A. Hussein, and R. M. Mohamed, "Visible light production of hydrogen from glycerol over Cu2O-gC3N4 nanocomposites with enhanced photocatalytic efficiency," J. Mater. Res. Technol., vol. 9, no. 6, p.15335–15345, 2020.
DOI: 10.1016/j.jmrt.2020.10.093
Google Scholar
[9]
A. K. Wahab and H. Idriss, "Study of the photocatalytic reforming and oxidation of Glycerol over Ag–Pd/TiO2," Int. J. Hydrogen Energy, vol. 52, p.159–171, 2023.
DOI: 10.1016/j.ijhydene.2023.05.344
Google Scholar
[10]
M. Anitha, S. K. Kamarudin, and N. T. Kofli, "The potential of glycerol as a value-added commodity," Chem. Eng. J., vol. 295, p.119–130, 2016.
DOI: 10.1016/j.cej.2016.03.012
Google Scholar
[11]
R. Kalla, S. Sumarno, and M. Mahfud, "Degradasi Gliserol Katalitik Menggunakan Tanduk Getar," p.52–57, 2016.
Google Scholar
[12]
Y. Liu et al., "Hollow tubular carbon doping graphitic carbon nitride with adjustable structure for highly enhanced photocatalytic hydrogen production," Carbon N. Y., vol. 182, p.287–296, 2021.
DOI: 10.1016/j.carbon.2021.06.008
Google Scholar
[13]
M. Alhaddad, R. M. Navarro, M. A. Hussein, and R. M. Mohamed, "Bi2O3/ g-C3N4 nanocomposites as proficient photocatalysts for hydrogen generation from aqueous glycerol solutions beneath visible light," Ceram. Int., vol. 46, no. 16, p.24873–24881, 2020.
DOI: 10.1016/j.ceramint.2020.06.271
Google Scholar
[14]
L. Chen et al., "Nitrogen defects/boron dopants engineered tubular carbon nitride for efficient tetracycline hydrochloride photodegradation and hydrogen evolution," Appl. Catal. B Environ., vol. 303, no. October 2021, p.120932, 2022.
DOI: 10.1016/j.apcatb.2021.120932
Google Scholar
[15]
S. Wang, X. Wang, B. Liu, X. Xiao, L. Wang, and W. Huang, "Boosting the photocatalytic hydrogen production performance of graphitic carbon nitride nanosheets by tailoring the cyano groups," J. Colloid Interface Sci., vol. 610, p.495–503, 2022.
DOI: 10.1016/j.jcis.2021.11.098
Google Scholar
[16]
X. Xu et al., "Photocatalytic reforming of biomass for hydrogen production over ZnS nanoparticles modified carbon nitride nanosheets," J. Colloid Interface Sci., vol. 555, p.22–30, 2019.
DOI: 10.1016/j.jcis.2019.07.066
Google Scholar
[17]
R. Zhang, S. Niu, X. Zhang, Z. Jiang, J. Zheng, and C. Guo, "Combination of experimental and theoretical investigation on Ti-doped g-C3N4 with improved photo-catalytic activity," Appl. Surf. Sci., vol. 489, no. January, p.427–434, 2019.
DOI: 10.1016/j.apsusc.2019.05.362
Google Scholar
[18]
T. Song, L. Hou, B. Long, A. Ali, and G. J. Deng, "Constructing ultralong hollow chain-ball-like carbon nitride implanted with oxygen for superior visible-light photocatalytic hydrogen production," J. Alloys Compd., vol. 857, p.157609, 2021.
DOI: 10.1016/j.jallcom.2020.157609
Google Scholar
[19]
E. Mari, P. C. Tsai, M. Eswaran, and V. K. Ponnusamy, "Efficient electro-catalytic oxidation of ethylene glycol using flower-like graphitic carbon nitride/iron oxide/palladium nanocomposite for fuel cell application," Fuel, vol. 280, no. 100, p.118646, 2020.
DOI: 10.1016/j.fuel.2020.118646
Google Scholar
[20]
M. Pourmadadi et al., "Graphitic carbon nitride (g-C3N4) synthesis methods, surface functionalization, and drug delivery applications: A review," J. Drug Deliv. Sci. Technol., vol. 79, no. August 2022, p.104001, 2023.
DOI: 10.1016/j.jddst.2022.104001
Google Scholar
[21]
J. Nowicki, J. Lach, M. Organek, and E. Sabura, "Transesterification of rapeseed oil to biodiesel over Zr-dopped MgAl hydrotalcites," Appl. Catal. A Gen., vol. 524, p.17–24, 2016.
DOI: 10.1016/j.apcata.2016.05.015
Google Scholar
[22]
T. Faiz, T. Nabila, and A. W. Budiman, "Sintesis Metal-Doped Carbon Nitride Nanosheets sebagai Pengurai Limbah Pewarna secara Fotokatalisis," Equilib. J. Chem. Eng., vol. 6, no. 1, p.50–56, 2022.
DOI: 10.20961/equilibrium.v6i1.62258
Google Scholar
[23]
X. Wen, N. Sun, Y. Tan, W. Wang, C. Yan, and H. Wang, "One-step synthesis of petals-like graphitic carbon nitride nanosheets with triazole defects for highly improved photocatalytic hydrogen production," Int. J. Hydrogen Energy, vol. 44, no. 5, p.2675–2684, 2019.
DOI: 10.1016/j.ijhydene.2018.11.117
Google Scholar
[24]
A. Furqonita, A. B. Aritonang, and M. Agus Wibowo, "Sintesis TiO2 Terdoping Bi 3+ Dan Uji Aktivitas Fotokatalisis Antibakteri E.coli Dengan Bantuan Sinar Tampak," Indones. J. Pure Appl. Chem., vol. 4, no. 4, p.69–80, 2021, [Online]. Available: http://jurnal.untan.ac.id/index.php/IJoPAC
DOI: 10.26418/indonesian.v4i2.46976
Google Scholar
[25]
Y. Wang et al., "TiCN MXene hybrid BCN nanotubes with trace level Co as an efficient ORR electrocatalyst for Zn-air batteries," Int. J. Hydrogen Energy, vol. 47, no. 48, p.20894–20904, 2022.
DOI: 10.1016/j.ijhydene.2022.04.211
Google Scholar
[26]
T. Tian, Z. Huang, Y. Du, and L. Zhao, "Efficient degradation of tetracycline in a photo-Fenton system constructed by combining MOF-derived Fe2O3/C/In2O3 heterojunction with vitamin C," J. Alloys Compd., vol. 968, no. June, p.172048, 2023.
DOI: 10.1016/j.jallcom.2023.172048
Google Scholar
[27]
D. G. Tong, W. Chu, Y. Y. Luo, X. Y. Ji, and Y. He, "Effect of crystallinity on the catalytic performance of amorphous Co-B particles prepared from cobalt nitrate and potassium borohydride in the cinnamaldehyde hydrogenation," J. Mol. Catal. A Chem., vol. 265, no. 1–2, p.195–204, 2007.
DOI: 10.1016/j.molcata.2006.10.032
Google Scholar
[28]
C. Wichasilp, A. Phuruangrat, and S. Thongtem, "Influence of pH on the synthesis ZnO nanorods and photocatalytic hydrogen production from glycerol solution," J. Indian Chem. Soc., vol. 99, no. 6, p.100472, 2022.
DOI: 10.1016/j.jics.2022.100472
Google Scholar
[29]
G. Iervolino et al., "Photocatalytic production of hydrogen and methane from glycerol reforming over Pt/TiO2–Nb2O5," Int. J. Hydrogen Energy, vol. 46, no. 78, p.38678–38691, 2021.
DOI: 10.1016/j.ijhydene.2021.09.111
Google Scholar
[30]
A. Thomas et al., "Graphitic carbon nitride materials: Variation of structure and morphology and their use as metal-free catalysts," J. Mater. Chem., vol. 18, no. 41, p.4893–4908, 2008.
DOI: 10.1039/b800274f
Google Scholar
[31]
A. W. Budiman, B. S. T. Sembodo, A. Alviansyah, and I. B. S. Putri, "Application of titanium doped g-C3N4 for the degradation of toxic dyes in textiles wastewater," AIP Conf. Proc., vol. 2217, no. April, 2020.
DOI: 10.1063/5.0000663
Google Scholar
[32]
A. W. Budiman, A. D. Susanti, F. Mubarok, and R. I. Rahmawati, "Tofu liquid-waste photodegradation using g- C3N4," J. Chem. Phys., vol. 150, no. 22, p.1–5, 2019.
DOI: 10.1063/1.5098257
Google Scholar
[33]
Q. Lin, L. Li, S. Liang, M. Liu, J. Bi, and L. Wu, "Applied Catalysis B : Environmental Efficient synthesis of monolayer carbon nitride 2D nanosheet with tunable concentration and enhanced visible-light photocatalytic activities," vol. 163, p.135–142, 2015.
DOI: 10.1016/j.apcatb.2014.07.053
Google Scholar
[34]
S. Karim, Pardoyo, and A. Subagyo, "Sintesis dan Karakterisasi TiO2 Terdoping Nitrogen (N-Doped TiO2) dengan Metode Sol–Gel," J. Kim. Sains dan Apl., vol. 19, no. 3, p.111–117, 2016.
DOI: 10.14710/jksa.19.2.63-67
Google Scholar
[35]
E. Iftitah, Muchalal, W. Trisunaryanti, and R. Armunanto, "Karakterisasi Dan Aktivitas Katalitik Berbagai Variasi Komposisi Katalis Ni Dan Znbr2 Dalam Γ-Al2O3 Untuk Isomerisasi Dan Hidrogenasi (R)-(+)-Sitronelal," J. MIPA, vol. 36, no. 1, p.60–69, 2013.
Google Scholar
[36]
S. Taylor, M. Mehta, and A. Samokhvalov, "Production of hydrogen by glycerol photoreforming using binary nitrogen-metal-promoted N-M-TiO2 photocatalysts," ChemPhysChem, vol. 15, no. 5, p.942–949, 2014.
DOI: 10.1002/cphc.201301140
Google Scholar
[37]
C. Zhang et al., "Dual functional S-scheme ZnIn2S4/crystalline polymeric carbon nitride (ZIS/CPCN) heterojunction for efficient photocatalytic hydrogen evolution and degradation of levofloxacin," Chem. Eng. J., vol. 495, no. June, p.153563, 2024.
DOI: 10.1016/j.cej.2024.153563
Google Scholar
[38]
T. W. P. Seadira, C. M. Masuku, and M. S. Scurrell, "Solar photocatalytic glycerol reforming for hydrogen production over Ternary Cu/THS/graphene photocatalyst: Effect of Cu and graphene loading," Renew. Energy, vol. 156, p.84–97, 2020.
DOI: 10.1016/j.renene.2020.04.020
Google Scholar