[1]
G. Prashar, H. Vasudev, D. Bhuddhi, Additive manufacturing: expanding 3D printing horizon in industry 4.0, International Journal on Interactive Design and Manufacturing 17 (2023) 2221–2235.
DOI: 10.1007/s12008-022-00956-4
Google Scholar
[2]
R. Tangestani, T. Sabiston, A. Chakraborty, L. Yuan, N. Krutz, É. Martin, An Efficient Track-Scale Model for Laser Powder Bed Fusion Additive Manufacturing: Part 2—Mechanical Model, Front Mater 8 (2021) 1–14.
DOI: 10.3389/fmats.2021.759669
Google Scholar
[3]
R. Tangestani, T. Sabiston, A. Chakraborty, W. Muhammad, L. Yuan, É. Martin, An Efficient Track-Scale Model for Laser Powder Bed Fusion Additive Manufacturing: Part 1- Thermal Model, Front Mater 8 (2021) 1–14.
DOI: 10.3389/fmats.2021.753040
Google Scholar
[4]
A. Chakraborty, R. Tangestani, W. Muhammad, T. Sabiston, J.P. Masse, R. Batmaz, A. Wessman, É. Martin, Micro-cracking mechanism of RENÉ 108 thin-wall components built by laser powder bed fusion additive manufacturing, Mater Today Commun 30 (2022).
DOI: 10.1016/j.mtcomm.2022.103139
Google Scholar
[5]
A. Chakraborty, W. Muhammad, J.P. Masse, R. Tangestani, M. Ghasri-Khouzani, A. Wessman, É. Martin, Role of alloy composition on micro-cracking mechanisms in additively manufactured Ni-based superalloys, Acta Mater 255 (2023).
DOI: 10.1016/j.actamat.2023.119089
Google Scholar
[6]
R. Tangestani, A. Chakraborty, T. Sabiston, L. Yuan, M. Ghasri-Khouzani, É. Martin, Multi-scale model to simulate stress directionality in laser powder bed fusion: Application to thin-wall part failure, Mater Des 232 (2023).
DOI: 10.1016/j.matdes.2023.112147
Google Scholar
[7]
C.P. Kohar, É. Martin, D.S. Connolly, S. Patil, N. Krutz, D. Wei, K. Inal, A new and efficient thermo-elasto-viscoplastic numerical implementation for implicit finite element simulations of powder metals: An application to hot isostatic pressing, Int J Mech Sci 155 (2019) 222–234.
DOI: 10.1016/j.ijmecsci.2019.01.046
Google Scholar
[8]
W. Muhammad, R. Batmaz, A. Natarajan, E. Martin, Effect of binder jetting microstructure variability on low cycle fatigue behavior of 316L, Materials Science and Engineering: A 839 (2022) 142820.
DOI: 10.1016/j.msea.2022.142820
Google Scholar
[9]
X. Quelennec, E. Martin, L. Jiang, J.J. Jonas, Work hardening and kinetics of dynamic recrystallization in hot deformed austenite, J Phys Conf Ser 240 (2010).
DOI: 10.1088/1742-6596/240/1/012082
Google Scholar
[10]
A. Thatte, A. Loghin, E. Martin, V. Dheeradhada, Y. Shin, B. Ananthasayanam, Multi-scale coupled physics models and experiments for performance and life prediction of supercritical CO2 turbomachinery components, The 5th International Symposium - SCO2 Power Cycles 1 (2016) 1–24.
DOI: 10.1115/gt2016-57695
Google Scholar
[11]
L. Jiang, J.J. Jonas, The combined effect of static recrystallization, 100 (2009) 576–583.
Google Scholar
[12]
Z. Zeng, M. Salehi, A. Kopp, S. Xu, M. Esmaily, N. Birbilis, Recent progress and perspectives in additive manufacturing of magnesium alloys, Journal of Magnesium and Alloys 10 (2022) 1511–1541.
DOI: 10.1016/j.jma.2022.03.001
Google Scholar
[13]
M. Ghasri-Khouzani, H. Karimialavijeh, R. Tangestani, M. Pröbstle, Martin, Single-track study of A20X aluminum alloy fabricated by laser powder bed fusion: Modeling and experiments, Opt Laser Technol 162 (2023) 1–10.
DOI: 10.1016/j.optlastec.2023.109276
Google Scholar
[14]
H. Karimialavijeh, M. Ghasri-Khouzani, A. Das, M. Pröebstle, Martin, Effect of laser contour scan parameters on fatigue performance of A20X fabricated by laser powder bed fusion, Int J Fatigue 175 (2023).
DOI: 10.1016/j.ijfatigue.2023.107775
Google Scholar
[15]
H. Karimialavijeh, M. Ghasri-Khouzani, A. Chakraborty, M. Pröbstle, E. Martin, Direct aging of additively manufactured A20X aluminum alloy, J Alloys Compd 968 (2023).
DOI: 10.1016/j.jallcom.2023.172071
Google Scholar
[16]
B. Liu, Y. Wang, Z. Lin, T. Zhang, Creating metal parts by Fused Deposition Modeling and Sintering, Mater Lett 263 (2020) 127252.
DOI: 10.1016/j.matlet.2019.127252
Google Scholar
[17]
B. Hausnerova, B.N. Mukund, D. Sanetrnik, Rheological properties of gas and water atomized 17-4PH stainless steel MIM feedstocks: Effect of powder shape and size, Powder Technol 312 (2017) 152–158.
DOI: 10.1016/j.powtec.2017.02.023
Google Scholar
[18]
C. Santos, D. Gatões, F. Cerejo, M.T. Vieira, Influence of metallic powder characteristics on extruded feedstock performance for indirect additive manufacturing, Materials 14 (2021).
DOI: 10.3390/ma14237136
Google Scholar
[19]
A.K. Basak, J.M. Sali, A. Pramanik, Mechanical Properties of 17-4 PH Stainless Steel Manufactured by Atomic Diffusion Additive Manufacturing, Designs (Basel) 9 (2025) 66.
DOI: 10.3390/designs9030066
Google Scholar
[20]
V. Di Pompeo, E. Santecchia, A. Santoni, K. Sleem, M. Cabibbo, S. Spigarelli, Microstructure and Defect Analysis of 17-4PH Stainless Steel Fabricated by the Bound Metal Deposition Additive Manufacturing Technology, Crystals (Basel) 13 (2023).
DOI: 10.3390/cryst13091312
Google Scholar
[21]
J.A. Naranjo, C. Berges, R. Campana, G. Herranz, Rheological and mechanical assessment for formulating hybrid feedstock to be used in MIM & FFF, Results in Engineering 19 (2023) 101258.
DOI: 10.1016/j.rineng.2023.101258
Google Scholar
[22]
M. Sadaf, M. Bragaglia, F. Nanni, A simple route for additive manufacturing of 316L stainless steel via Fused Filament Fabrication, J Manuf Process 67 (2021) 141–150.
DOI: 10.1016/j.jmapro.2021.04.055
Google Scholar
[23]
S. Mirzababaei, S. Pasebani, A review on binder jet additive manufacturing of 316L stainless steel, Journal of Manufacturing and Materials Processing 3 (2019) 8–12.
DOI: 10.3390/jmmp3030082
Google Scholar
[24]
K. Pielichowski, K. Flejtuch, Differential scanning calorimetry study of blends of poly(ethylene glycol) with selected fatty acids, Macromol Mater Eng 288 (2003) 259–264.
DOI: 10.1002/mame.200390022
Google Scholar
[25]
D.L. Vinay, R. Keshavamurthy, V. Tambrallimath, Enhanced Mechanical Properties of Metal filled 3D Printed Polymer Composites, Journal of The Institution of Engineers (India): Series D 104 (2023) 181–195.
DOI: 10.1007/s40033-022-00406-1
Google Scholar