Formulation and Characterization of Stainless Steel-Based Feedstocks for Fused Deposition Modeling: Effects of Binder Composition on Rheology, Printability, Physical, and Mechanical Properties

Article Preview

Abstract:

This study investigates how feedstock composition affects the performance of 17-4 PH stainless steel (SS) parts produced by fused deposition modeling (FDM). Feedstocks consisted of 91–93 wt.% SS, with varying amounts of polyethylene glycol (PEG), paraffin wax (PW), and stearic acid (SA). Rheological analysis revealed shear-thinning behavior, with viscosity predominantly affected by PEG content at lower metal concentrations and increasingly governed by metal loading at higher concentrations. Thermal debinding confirmed that feedstocks with at least 91 wt.% metal and 3 wt.% PEG maintained structural integrity. Among tested formulations, 93 wt.% SS provided the best print quality, achieving 4.31 g/cm³ density, 1154 MPa flexural modulus, and 5.8 MPa flexural strength. Overall, the results highlight the importance of balancing metal and binder content for optimal FDM outcomes.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1174)

Pages:

69-75

Citation:

Online since:

January 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Prashar, H. Vasudev, D. Bhuddhi, Additive manufacturing: expanding 3D printing horizon in industry 4.0, International Journal on Interactive Design and Manufacturing 17 (2023) 2221–2235.

DOI: 10.1007/s12008-022-00956-4

Google Scholar

[2] R. Tangestani, T. Sabiston, A. Chakraborty, L. Yuan, N. Krutz, É. Martin, An Efficient Track-Scale Model for Laser Powder Bed Fusion Additive Manufacturing: Part 2—Mechanical Model, Front Mater 8 (2021) 1–14.

DOI: 10.3389/fmats.2021.759669

Google Scholar

[3] R. Tangestani, T. Sabiston, A. Chakraborty, W. Muhammad, L. Yuan, É. Martin, An Efficient Track-Scale Model for Laser Powder Bed Fusion Additive Manufacturing: Part 1- Thermal Model, Front Mater 8 (2021) 1–14.

DOI: 10.3389/fmats.2021.753040

Google Scholar

[4] A. Chakraborty, R. Tangestani, W. Muhammad, T. Sabiston, J.P. Masse, R. Batmaz, A. Wessman, É. Martin, Micro-cracking mechanism of RENÉ 108 thin-wall components built by laser powder bed fusion additive manufacturing, Mater Today Commun 30 (2022).

DOI: 10.1016/j.mtcomm.2022.103139

Google Scholar

[5] A. Chakraborty, W. Muhammad, J.P. Masse, R. Tangestani, M. Ghasri-Khouzani, A. Wessman, É. Martin, Role of alloy composition on micro-cracking mechanisms in additively manufactured Ni-based superalloys, Acta Mater 255 (2023).

DOI: 10.1016/j.actamat.2023.119089

Google Scholar

[6] R. Tangestani, A. Chakraborty, T. Sabiston, L. Yuan, M. Ghasri-Khouzani, É. Martin, Multi-scale model to simulate stress directionality in laser powder bed fusion: Application to thin-wall part failure, Mater Des 232 (2023).

DOI: 10.1016/j.matdes.2023.112147

Google Scholar

[7] C.P. Kohar, É. Martin, D.S. Connolly, S. Patil, N. Krutz, D. Wei, K. Inal, A new and efficient thermo-elasto-viscoplastic numerical implementation for implicit finite element simulations of powder metals: An application to hot isostatic pressing, Int J Mech Sci 155 (2019) 222–234.

DOI: 10.1016/j.ijmecsci.2019.01.046

Google Scholar

[8] W. Muhammad, R. Batmaz, A. Natarajan, E. Martin, Effect of binder jetting microstructure variability on low cycle fatigue behavior of 316L, Materials Science and Engineering: A 839 (2022) 142820.

DOI: 10.1016/j.msea.2022.142820

Google Scholar

[9] X. Quelennec, E. Martin, L. Jiang, J.J. Jonas, Work hardening and kinetics of dynamic recrystallization in hot deformed austenite, J Phys Conf Ser 240 (2010).

DOI: 10.1088/1742-6596/240/1/012082

Google Scholar

[10] A. Thatte, A. Loghin, E. Martin, V. Dheeradhada, Y. Shin, B. Ananthasayanam, Multi-scale coupled physics models and experiments for performance and life prediction of supercritical CO2 turbomachinery components, The 5th International Symposium - SCO2 Power Cycles 1 (2016) 1–24.

DOI: 10.1115/gt2016-57695

Google Scholar

[11] L. Jiang, J.J. Jonas, The combined effect of static recrystallization, 100 (2009) 576–583.

Google Scholar

[12] Z. Zeng, M. Salehi, A. Kopp, S. Xu, M. Esmaily, N. Birbilis, Recent progress and perspectives in additive manufacturing of magnesium alloys, Journal of Magnesium and Alloys 10 (2022) 1511–1541.

DOI: 10.1016/j.jma.2022.03.001

Google Scholar

[13] M. Ghasri-Khouzani, H. Karimialavijeh, R. Tangestani, M. Pröbstle, Martin, Single-track study of A20X aluminum alloy fabricated by laser powder bed fusion: Modeling and experiments, Opt Laser Technol 162 (2023) 1–10.

DOI: 10.1016/j.optlastec.2023.109276

Google Scholar

[14] H. Karimialavijeh, M. Ghasri-Khouzani, A. Das, M. Pröebstle, Martin, Effect of laser contour scan parameters on fatigue performance of A20X fabricated by laser powder bed fusion, Int J Fatigue 175 (2023).

DOI: 10.1016/j.ijfatigue.2023.107775

Google Scholar

[15] H. Karimialavijeh, M. Ghasri-Khouzani, A. Chakraborty, M. Pröbstle, E. Martin, Direct aging of additively manufactured A20X aluminum alloy, J Alloys Compd 968 (2023).

DOI: 10.1016/j.jallcom.2023.172071

Google Scholar

[16] B. Liu, Y. Wang, Z. Lin, T. Zhang, Creating metal parts by Fused Deposition Modeling and Sintering, Mater Lett 263 (2020) 127252.

DOI: 10.1016/j.matlet.2019.127252

Google Scholar

[17] B. Hausnerova, B.N. Mukund, D. Sanetrnik, Rheological properties of gas and water atomized 17-4PH stainless steel MIM feedstocks: Effect of powder shape and size, Powder Technol 312 (2017) 152–158.

DOI: 10.1016/j.powtec.2017.02.023

Google Scholar

[18] C. Santos, D. Gatões, F. Cerejo, M.T. Vieira, Influence of metallic powder characteristics on extruded feedstock performance for indirect additive manufacturing, Materials 14 (2021).

DOI: 10.3390/ma14237136

Google Scholar

[19] A.K. Basak, J.M. Sali, A. Pramanik, Mechanical Properties of 17-4 PH Stainless Steel Manufactured by Atomic Diffusion Additive Manufacturing, Designs (Basel) 9 (2025) 66.

DOI: 10.3390/designs9030066

Google Scholar

[20] V. Di Pompeo, E. Santecchia, A. Santoni, K. Sleem, M. Cabibbo, S. Spigarelli, Microstructure and Defect Analysis of 17-4PH Stainless Steel Fabricated by the Bound Metal Deposition Additive Manufacturing Technology, Crystals (Basel) 13 (2023).

DOI: 10.3390/cryst13091312

Google Scholar

[21] J.A. Naranjo, C. Berges, R. Campana, G. Herranz, Rheological and mechanical assessment for formulating hybrid feedstock to be used in MIM & FFF, Results in Engineering 19 (2023) 101258.

DOI: 10.1016/j.rineng.2023.101258

Google Scholar

[22] M. Sadaf, M. Bragaglia, F. Nanni, A simple route for additive manufacturing of 316L stainless steel via Fused Filament Fabrication, J Manuf Process 67 (2021) 141–150.

DOI: 10.1016/j.jmapro.2021.04.055

Google Scholar

[23] S. Mirzababaei, S. Pasebani, A review on binder jet additive manufacturing of 316L stainless steel, Journal of Manufacturing and Materials Processing 3 (2019) 8–12.

DOI: 10.3390/jmmp3030082

Google Scholar

[24] K. Pielichowski, K. Flejtuch, Differential scanning calorimetry study of blends of poly(ethylene glycol) with selected fatty acids, Macromol Mater Eng 288 (2003) 259–264.

DOI: 10.1002/mame.200390022

Google Scholar

[25] D.L. Vinay, R. Keshavamurthy, V. Tambrallimath, Enhanced Mechanical Properties of Metal filled 3D Printed Polymer Composites, Journal of The Institution of Engineers (India): Series D 104 (2023) 181–195.

DOI: 10.1007/s40033-022-00406-1

Google Scholar