[1]
K. Wang, A study of HSLA steels microalloyed with vanadium and titanium during simulated controlled rolling cycles, PhD. Thesis, Dept. of Mech. Eng., Univ. of Canterbury (2003).
Google Scholar
[2]
A. Kundu, C. Davis, M. Strangwood, Grain size distributions after single hit deformation of segregated, commercial Nb-containing steel: Prediction and experiment, Metall. and Mater. Trans. A, 24A (2011) 2794-2806.
DOI: 10.1007/s11661-011-0712-1
Google Scholar
[3]
L.J. Cuddy, Grain refinement of Nb steels by control of recrystallization during hot rolling, Metall. Trans. A 15A (1984) 87-98.
DOI: 10.1007/bf02644390
Google Scholar
[4]
H. Baumgardt, H.F. de Boer, F. Heisterkamp, Review of microalloyed structural plate metallurgy – Alloying, Rolling, Heat Treatment, available online https://niobium.tech/.
Google Scholar
[5]
D. G., Stalheim, Recrystallization behaviors in the production of structural steels, in Proceedings of the 2015 ABM 52nd Rolling Seminar, Rio de Janeiro, Brazil, August 2015.
DOI: 10.5151/1983-4764-26355
Google Scholar
[6]
M. Jonsson, TM-Rolling of heavy plate and roll wear, Thesis, Dept. Applied physics and Mech Eng., (2006).
Google Scholar
[7]
K.M. Banks, Internal offline one-dimensional heat transfer model. Univ. of Pretoria. (2017)
Google Scholar
[8]
F. Fletcher, Meta-analysis of Tnr measurements: Determining new empirical models based on composition and strain; Proceedings of the Austenite Processing Symposium (Internal Company Presentation); Padua, Italy. 12 September 2008; p.1–14.
Google Scholar
[9]
B.K. Show, R. Veerababu, R. Balamuralikrishnan, G. Malakondaiah, Effect of vanadium and titanium modification on the microstructure and mechanical properties of a microalloyed HSLA steel, Mater. Sci. & Eng. A 527 (2010) 1595-1604.
DOI: 10.1016/j.msea.2009.10.049
Google Scholar
[10]
D.R.N. Maubane, K.M. Banks, V. Kurup., Influence of Hot Rolling Practice and Furnace Residence Time on the Strength and Toughness of Normalised Nb-Ti-V Structural Steel Plate, Mater. Sci. For. 1105 (2023) 111-1116.
DOI: 10.4028/p-k20ipd
Google Scholar
[11]
S. Vervynckt, K. Verbeken, P. Thibaux, & Y. Houbaert, Evaluation of the austenite recrystallization by multideformation and double deformation, Steel Research International 82(2) (2011) 369-378.
DOI: 10.1002/srin.201000167
Google Scholar
[12]
C.L. Miao, C.J. Shang, G.D. Zhang, S.V. Subramanian, Recrystallization and strain accumulation behaviours of high Nb-bearing line pipe steel in plate and steel rolling, Mater. Sci. and Eng. A 18–19 (2010) 4985-4992.
DOI: 10.1016/j.msea.2010.04.039
Google Scholar
[13]
F. Siciliano Jr., J. Jonas, Mathematical Modeling of the Hot strip rolling of microalloyed Nb, Multiply alloyed Cr-Mo, and Plain C-Mn steels, Metall. & Mater. Trans. A, 31A (2000) 511-530.
DOI: 10.1007/s11661-000-0287-8
Google Scholar
[14]
S. Shanmugama, N.K. Ramisetti, R.D.K. Misra, T. Mannering, D. Panda, S. Jansto, Effect of cooling rate on the microstructure and mechanical properties of Nb-microalloyed steels, Mater. Sci. and Eng. A 460–461 (2007) 335–343
DOI: 10.1016/j.msea.2007.01.054
Google Scholar
[15]
X. Li, Z. Wang, X. Deng, G. Wang, R.D.K. Misra, The Determining Role of Finish Cooling Temperature on the Microstructural Evolution and Precipitation Behavior in an Nb-V-Ti Microalloyed Steel in the Context of Newly Developed Ultrafast Cooling, Metall. and Mater. Trans. A, 47A (2016) 1930-1938.
DOI: 10.1007/s11661-016-3424-8
Google Scholar
[16]
J. Reiser, A. Hartmaier, Impact of grain size on toughness and the brittle-to-ductile transition: Elucidating the contradicting role of grain boundaries (obstacles vs. sources) by dislocation dynamics modelling, Submitted to Acta Mater.
DOI: 10.1038/s41598-020-59405-5
Google Scholar