Materials Science Forum
Vols. 490-491
Vols. 490-491
Materials Science Forum
Vols. 488-489
Vols. 488-489
Materials Science Forum
Vols. 486-487
Vols. 486-487
Materials Science Forum
Vols. 483-485
Vols. 483-485
Materials Science Forum
Vol. 482
Vol. 482
Materials Science Forum
Vols. 480-481
Vols. 480-481
Materials Science Forum
Vols. 475-479
Vols. 475-479
Materials Science Forum
Vols. 473-474
Vols. 473-474
Materials Science Forum
Vols. 471-472
Vols. 471-472
Materials Science Forum
Vols. 467-470
Vols. 467-470
Materials Science Forum
Vols. 465-466
Vols. 465-466
Materials Science Forum
Vols. 461-464
Vols. 461-464
Materials Science Forum
Vols. 457-460
Vols. 457-460
Materials Science Forum Vols. 475-479
Paper Title Page
Abstract: The objective of this study was to optimize the casting design of gamma titanium aluminde automotive turbocharger rotor by means of the practical experiment and numerical simulation. Gamma titanium aluminide rotors were produced by centrifugal casting methods on a laboratory scale. Based on the metal-mold reaction of gamma titanium aluminide, the investment molds were manufactured by an electro-fused Al2O3 mold. The experimental results showed that the castings failed to reach the end of the cavities due to insufficient centrifugal force and a lower fluidity compared to the other metals. Although the satisfactory results were not obtained in the numerical simulation, it was concluded that numerical simulation aided to achieve understanding of the casting process and defect formation in gamma titanium aluminide turbocharger rotor castings.
2547
Abstract: The aim of the present work is to investigate the possibility of in-situ synthesis and
net-shape of the titanium matrix composites (TMCs) using a casting route. From the scanning electron microscopy (SEM), electron probe micro-analyzer (EPMA), X-ray diffraction (XRD) and thermodynamic calculations, the spherical TiC and needle like TiB reinforced hybrid TMCs could be obtained by the conventional casting route between titanium and B4C. No melts-mold reaction could
be possible between (TiC+TiB) hybrid TMCs and the SKKU mold, since the mold is composed of interstitial and substitutional reaction products. Not only the sound in-situ synthesis but also the economic net-shape of TMCs could be possible by conventional casting route.
2551
2555