Precipitation Microstructure of Ultrafine-Grained Al-Zn-Mg Alloys Processed by Severe Plastic Deformation

Article Preview

Abstract:

Supersaturated Al-4.8Zn-1.2Mg-0.14Zr and Al-5.7Zn-1.9Mg-0.35Cu (wt.%) alloys were processed by Equal-Channel Angular Pressing (ECAP) at 200°C. The crystallite size distribution and the characteristic parameters of the dislocation structure of both Al matrix and precipitates were determined by X-ray diffraction line profile analysis, which has been complemented by transmission electron microscopy (TEM) observations. Results of these investigations show that the bulk ultrafine-grained microstructure with high dislocation density produced by ECAP has strong influence on the precipitation process, resulting in high strength in both alloys.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 537-538)

Pages:

169-176

Citation:

Online since:

February 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Prog. Mater. Sci. Vol. 45 (2000), p.103.

Google Scholar

[2] Y. Iwahashi, Z. Horita, M. Nemoto and T.G. Langdon: Metall. Mater. Trans. A Vol. 29A (1998), p.2503.

Google Scholar

[3] V.V. Stolyarov, Y.T. Zhu, I.V. Alexandrov, T.C. Lowe and R.Z. Valiev: Mater. Sci. Eng. A Vol. 303 (2001), p.82.

Google Scholar

[4] A. Dubravina, M.J. Zehetbauer, E. Schafler, I.V. Alexandrov, Mater. Sci. Eng. A Vol. 387-389 (2004), p.817.

Google Scholar

[5] M.A. Krivoglaz: Theory of X-ray and Thermal Neutron Scattering by Real Crystals (Plenum Press, New York 1996).

Google Scholar

[6] M. Wilkens: Phys. Stat. Sol. (a) Vol. 2 (1970), p.359.

Google Scholar

[7] R. Kuzel jr. and P. Klimanek: J. Appl. Cryst. Vol. 21 (1988), p.363.

Google Scholar

[8] E. Schafler and R. Pippan: Mater. Sci. Eng. A Vol. 387-389 (2004) p.799.

Google Scholar

[9] P. Scardi and M. Leoni: Acta Cryst. A Vol. 58 (2002), p.190.

Google Scholar

[10] T. Ungár, J. Gubicza, G. Ribárik and A. Borbély: J. Appl. Cryst. Vol. 34 (2001), p.298.

Google Scholar

[11] G. Ribárik, T. Ungár and J. Gubicza: J. Appl. Cryst. Vol. 34 (2001), p.669.

Google Scholar

[12] N. Q. Chinh, Zs. Kovács, L. Reich, F. Székely, J. Illy and J. Lendvai: Z. Metallk. Vol. 88 (1997), p.607.

Google Scholar

[13] N. Q. Chinh, F. Csikor and J. Lendvai: Mater. Sci. Forum Vol. 332 (2000), p.1007.

Google Scholar

[14] N. Q. Chinh, Gy. Horváth, Zs. Kovács and J. Lendvai: Mater. Sci. Eng. A324 (2002), p.219.

Google Scholar

[15] N. Q. Chinh, J. Lendvai, D. H. Ping and K. Hono: J. All. Comp. Vol. 378 (2004), p.52.

Google Scholar

[16] J. Q. Su, T. W. Nelson, R. Mishra and M. Mahoney: Acta Mater. Vol. 51 (2003), p.713.

Google Scholar

[17] L. F. Mondolfo, Int. Metall. Rev. 153 (1971), 95.

Google Scholar

[18] J. Gubicza, M. Kassem, G. Ribárik and T. Ungár: Mater. Sci. Eng. A Vol. 372 (2004), p.115.

Google Scholar

[19] J. Gubicza, N.Q. Chinh, Z. Horita and T.G. Langdon: Mater. Sci. Eng. A Vol. 387-389 (2004), p.55.

Google Scholar

[20] T. Engdahl, V. Hansen, P. J. Warren and K. Stiller: Mater. Sci. Eng. A Vol. 327 (2002), p.59.

Google Scholar

[21] M. F. Ashby: Proc. Second Bolton Landing Conference on Oxide Dispersion Strenghtening (Gordon and Breach, New York 1968) p.119.

Google Scholar

[22] Y.H. Zhao, X.Z. Liao, Z. Jin, R.Z. Valiev and Y.T. Zhu: Acta Mater. Vol. 52 (2004), p.4589.

Google Scholar

[23] M. J. Starink and S. C. Wang: Acta Mater., Vol. 51 (2003), p.5131.

Google Scholar

[24] J. Gubicza, N. Q. Chinh, Gy. Krállics, I. Schiller and T. Ungár: Curr. Appl. Phys. Vol. 6 (2006), p.194.

Google Scholar

[25] D.A. Hughes and N. Hansen: Acta Mater. Vol. 48 (2000), p.2985.

Google Scholar

[26] U. F. Kocks: Phil. Mag. Vol. 13 (1966), p.541.

Google Scholar

[27] N. Q. Chinh, Gy. Horváth, Z. Horita and T. G. Langdon: Acta Mater. Vol. 52 (2004), p.3555.

Google Scholar