Precipitation Microstructure of Ultrafine-Grained Al-Zn-Mg Alloys Processed by Severe Plastic Deformation

Abstract:

Article Preview

Supersaturated Al-4.8Zn-1.2Mg-0.14Zr and Al-5.7Zn-1.9Mg-0.35Cu (wt.%) alloys were processed by Equal-Channel Angular Pressing (ECAP) at 200°C. The crystallite size distribution and the characteristic parameters of the dislocation structure of both Al matrix and precipitates were determined by X-ray diffraction line profile analysis, which has been complemented by transmission electron microscopy (TEM) observations. Results of these investigations show that the bulk ultrafine-grained microstructure with high dislocation density produced by ECAP has strong influence on the precipitation process, resulting in high strength in both alloys.

Info:

Periodical:

Materials Science Forum (Volumes 537-538)

Edited by:

J. Gyulai and P.J. Szabó

Pages:

169-176

Citation:

J. Gubicza et al., "Precipitation Microstructure of Ultrafine-Grained Al-Zn-Mg Alloys Processed by Severe Plastic Deformation ", Materials Science Forum, Vols. 537-538, pp. 169-176, 2007

Online since:

February 2007

Export:

Price:

$38.00

[1] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Prog. Mater. Sci. Vol. 45 (2000), p.103.

[2] Y. Iwahashi, Z. Horita, M. Nemoto and T.G. Langdon: Metall. Mater. Trans. A Vol. 29A (1998), p.2503.

[3] V.V. Stolyarov, Y.T. Zhu, I.V. Alexandrov, T.C. Lowe and R.Z. Valiev: Mater. Sci. Eng. A Vol. 303 (2001), p.82.

[4] A. Dubravina, M.J. Zehetbauer, E. Schafler, I.V. Alexandrov, Mater. Sci. Eng. A Vol. 387-389 (2004), p.817.

[5] M.A. Krivoglaz: Theory of X-ray and Thermal Neutron Scattering by Real Crystals (Plenum Press, New York 1996).

[6] M. Wilkens: Phys. Stat. Sol. (a) Vol. 2 (1970), p.359.

[7] R. Kuzel jr. and P. Klimanek: J. Appl. Cryst. Vol. 21 (1988), p.363.

[8] E. Schafler and R. Pippan: Mater. Sci. Eng. A Vol. 387-389 (2004) p.799.

[9] P. Scardi and M. Leoni: Acta Cryst. A Vol. 58 (2002), p.190.

[10] T. Ungár, J. Gubicza, G. Ribárik and A. Borbély: J. Appl. Cryst. Vol. 34 (2001), p.298.

[11] G. Ribárik, T. Ungár and J. Gubicza: J. Appl. Cryst. Vol. 34 (2001), p.669.

[12] N. Q. Chinh, Zs. Kovács, L. Reich, F. Székely, J. Illy and J. Lendvai: Z. Metallk. Vol. 88 (1997), p.607.

[13] N. Q. Chinh, F. Csikor and J. Lendvai: Mater. Sci. Forum Vol. 332 (2000), p.1007.

[14] N. Q. Chinh, Gy. Horváth, Zs. Kovács and J. Lendvai: Mater. Sci. Eng. A324 (2002), p.219.

[15] N. Q. Chinh, J. Lendvai, D. H. Ping and K. Hono: J. All. Comp. Vol. 378 (2004), p.52.

[16] J. Q. Su, T. W. Nelson, R. Mishra and M. Mahoney: Acta Mater. Vol. 51 (2003), p.713.

[17] L. F. Mondolfo, Int. Metall. Rev. 153 (1971), 95.

[18] J. Gubicza, M. Kassem, G. Ribárik and T. Ungár: Mater. Sci. Eng. A Vol. 372 (2004), p.115.

[19] J. Gubicza, N.Q. Chinh, Z. Horita and T.G. Langdon: Mater. Sci. Eng. A Vol. 387-389 (2004), p.55.

[20] T. Engdahl, V. Hansen, P. J. Warren and K. Stiller: Mater. Sci. Eng. A Vol. 327 (2002), p.59.

[21] M. F. Ashby: Proc. Second Bolton Landing Conference on Oxide Dispersion Strenghtening (Gordon and Breach, New York 1968) p.119.

[22] Y.H. Zhao, X.Z. Liao, Z. Jin, R.Z. Valiev and Y.T. Zhu: Acta Mater. Vol. 52 (2004), p.4589.

[23] M. J. Starink and S. C. Wang: Acta Mater., Vol. 51 (2003), p.5131.

[24] J. Gubicza, N. Q. Chinh, Gy. Krállics, I. Schiller and T. Ungár: Curr. Appl. Phys. Vol. 6 (2006), p.194.

[25] D.A. Hughes and N. Hansen: Acta Mater. Vol. 48 (2000), p.2985.

[26] U. F. Kocks: Phil. Mag. Vol. 13 (1966), p.541.

[27] N. Q. Chinh, Gy. Horváth, Z. Horita and T. G. Langdon: Acta Mater. Vol. 52 (2004), p.3555.