Phase-Field Modeling of Recrystallization - Effects of Second-Phase Particles on the Recrystallization Kinetics

Abstract:

Article Preview

The effects of second-phase particles on the recrystallization kinetics in two-dimensional polycrystalline structures were investigated. Numerical simulations of recrystallization were performed by coupling the unified subgrain growth theory with a phase-field methodology. Simple assumptions based on experimental observations were utilized for preparing initial microstructures. The following results were obtained: (1) The presence of second-phase particles retarded recrystallization speeds. (2) If the mean subgrain size was small enough recrystallized region covered whole system for various values of the particle fraction, f. (3) On the other hand, if the mean subgrain size was not small enough the progress of recrystallization was frozen at some point.

Info:

Periodical:

Materials Science Forum (Volumes 558-559)

Edited by:

S.-J.L. Kang, M.Y. Huh, N.M. Hwang, H. Homma, K. Ushioda and Y. Ikuhara

Pages:

1189-1194

Citation:

Y. Suwa et al., "Phase-Field Modeling of Recrystallization - Effects of Second-Phase Particles on the Recrystallization Kinetics", Materials Science Forum, Vols. 558-559, pp. 1189-1194, 2007

Online since:

October 2007

Export:

Price:

$38.00

[1] Humphreys FJ, Hatherly M. Recrystallization and related annealing phenomena Pergamon, Oxford, (1995).

[2] Humphreys FJ. Acta Mater 1997; 45: 4231.

[3] Rollett AD, Mullins WW. Scripta Mater 1997; 36: 975.

[4] Humphreys FJ. Scripta Metall 1992; 27: 1557.

[5] Holm EA, Miodownik MA, Rollett AD. Acta Mater 2003; 51: 2701.

[6] Okuda K, Rollett AD. Mat Sci Forum 2002; 408: 413.

[7] Weygand D, Bréchet Y, Lépinoux J. Phil Mag 2000; B80: (1987).

[8] Radhakrishnan B, Zacharia T. Model Simul Mater Sci Eng 2003; 11: 307.

[9] Radhakrishnan B, Sarma G, Zacharia T. Scripta Mater 1998; 39: 1639.

[10] Weygand D, Bréchet Y, Lépinoux J. Interface Sci 2001; 9: 311.

[11] Chen LQ, Yang W. Phys. Rev. B 1994; 50: 15752.

[12] Moelans N, Blanpain B, Wollants P. Acta Mater. 2005; 53: 1771.

[13] Moelans N, Blanpain B, Wollants P. Acta Mater. 2006; 54: 1175.

[14] Kazaryan A, Wang Y, Dregia SA, Patton BR. Acta Mater 2002; 50: 2491.

[15] Suwa Y, Saito Y, Onodera H. Comp Mat Sci, in press. doi: 10. 1016/ j. commatsci. 2006. 10. 025.

[16] Suwa Y, Saito Y. Mat Trans 2005; 46: 1208.

[17] Ma N, Kazaryan A, Dregia DA, Wang Y. Acta Mater 2004; 52: 3869.

[18] Read WT, Shockley W. Phy Rev 1950; 78: 275.

[19] Krill CE, Chen L-Q. Acta Mater 2002; 50: 3057.

[20] Suwa Y, Saito Y, Onodera H. Scripta Mater 2006; 55: 407.

[21] Suwa Y, Saito Y, Onodera H. Mat. Sci. Eng. A, accepted.

[22] Hillert M. Acta Metall. 1988; 36: 3177.

[23] Wöner CH, Hazzledine PM. Scripta Metall. 1993; 28: 337. 0 50 100 0 2000 4000 6000 8000 time, s' Average subgrain(grain) radius, g. p. =7. 85, f=0. 04 =11. 1, f=0. 04 =15. 8, f=0. 04 =7. 85, f=0. 0 =11. 1, f=0. 0 =15. 8, f=0. 0.

DOI: https://doi.org/10.1007/s00292-007-0919-5