Materials Science Forum Vols. 584-586

Paper Title Page

Abstract: Effect of solid solution elements on microstructure evolution and mechanical properties was investigated using a high purity Al (purity 99.99%) and Al-0.5 at.% X ( X = Si, Ag, Mg ) alloys deformed by accumulative roll bonding (ARB) process up to 7 cycles (equivalent strain of 5.6) at ambient temperature. The ARB-processed high purity Al showed the equiaxed microstructure having mean grain size of 750 nm. On the other hand, the microstructure of the ARB-processed Al-0.5at.%X alloys showed lamellar boundary structures elongated along RD. The mean lamellar boundary spacing significantly differed depending on the alloying elements, which suggested that solute atoms had a significant effect on microstructure evolution. The difference in the grain size was regarded to be caused by the difference in recovery processes in the alloys. The tensile strength of the alloys increased with increasing the number of ARB cycles. In the Al-Si and Al-Ag alloys, the post-uniform elongation increased with increasing the number of the ARB cycles. On the other hand, the elongation of the Al-Mg hardly changed during the ARB process.
547
Abstract: The L12-structured intermetallic compound Zr3Al can be rendered amorphous easily by several techniques. In the present study the structural evolution during high pressure torsion (HPT) was investigated systematically by transmission electron microscopy (TEM) methods. Zr3Al samples were deformed at room temperature to different grades of deformation up to shear strains of 140 000%. TEM investigations revealed that the tendency to grain fragmentation, disordering and the formation of a nanocrystalline structure is weak compared to other L12 ordered alloys like Ni3Al. In addition, an amorphous phase has not been encountered. The present results differ strongly from previous ones obtained from ball-milled materials. Possible reasons for the different behavior are discussed on the basis of the temperature dependent dissociation scheme of the superlattice dislocations gliding in Zr3Al.
553
Abstract: Severe plastic deformation of a Mg-Al-Ca alloy resulted in different types of grain structure. High pressure torsion (HPT) was shown to lead to the formation of a nanocrystalline structure with a grain size of 100-200 nm, while equal channel angular pressing (ECAP) produced ultrafine grained (UFG) or submicrocrystalline (SMC) structures, depending on the ECAP temperature. An UFG structure with a grain size of 2-5 -m was formed at 300°C, as distinct from a finer SMC structure with a grain size of 300-800 nm formed at a lower temperature (220°C). The possibility of increasing the strength of the alloy in the UFG condition by a factor of 1.5-2, combined with a reasonable level of ductility and enhanced functional properties was thus demonstrated. ECAP of annealed Mg-Al-Ca with the formation of UFG structure was shown to lead to increased yield strength (by a factor of 2) and enhanced tensile ductility (by a factor of 3).
559
Abstract: The effects associated with the change of the deformation path - such as the replacement of homogeneous multi-slip by heterogeneous deformation and a decrease of global strain hardening - have been utilised in the metal forming operation termed KOBO technology. In the case of extrusion it consists in reversible, cyclic twisting of a billet under the extrusion force. The technology enables extrusion of metals with very large deformation in one operation at low temperature. A complex scheme of straining, large cumulated deformation and low temperature of the process results in a fine grained microstructure of the extruded material (product). The new technology requires detailed studies of the mechanism of the plastic deformation with the specific geometry of the zone of metal flow during extrusion. Essential in these studies is the information on the texture and microstructure in the deformation zone. The aim of this work is therefore to disclose the deformation mechanisms on the basis of the observations of microstructure and texture evolution in the zone of plastic flow of the extrudate. Coarse grained polycrystalline billets of magnesium alloys AZ31 were extruded by KOBO at room temperature and also by a conventional method at about 400°C. Methods of texture topography as well as optical observations reveal the specific microstructure and texture in mezzo and micro scale of heavily deformed material after extrusion. It is worth mentioning that the KOBO process leads to compact and rather homogeneous extrudates even in the case of AZ alloys. These hexagonal metals cannot be cold-formed to a high reduction with conventional techniques.
565
Abstract: High resolution X-ray line profile analysis is sensitive to crystallite size, dislocation densities and character, and to planar defects, especially stacking faults or twinning. The different effects of microstructure features can be evaluated separately on the basis of the different corresponding profile functions and the different hkl dependences of line broadening. Profiles of faulted crystals consist of sub-profiles broadened and shifted according to different hkl conditions. The systematic analysis of the breadts and shifts of sub-profiles enables X-ray line profile analysis by using defect related profile functions corresponding to: (i) size, (ii) strain and (iii) planar faults, respectively. It is shown that twinning can either be enhanced or weakened by severe plastic deformation.
571
Abstract: Ultrafine-grained aluminum microstructures were processed from commercial purity powder by combining hot isostatic pressing (HIP) and dynamic severe plastic deformation (DSPD). After the first step, the bulk consolidated material showed a random texture and homogeneous microstructure of equiaxed grains with an average size of 2µm. The material was then subsequently impacted, using a falling weight at a strain rate of 300s-1. The resulting material showed a microstructure having an average grain size of about 500 nm with a strong gradient of fiber-like crystallographic texture parallel to the impact direction. The mechanical properties of the impacted material were subsequently characterized under compressive tests at room temperature at a strain rate of 10-4s-1. The effect of the change of the deformation path on the mechanical response parallel (DN) and perpendicular (DT) to the impact direction was also investigated. These results are here discussed in relation with microstructure and texture evolution.
579
Abstract: In the present work, a thorough investigation of evolution of microstructure and texture has been carried out to elucidate the evolution of texture and grain boundary character distribution (GBCD) during Equal Channel Angular Extrusion (ECAE) of some model two-phase materials, namely Cu-0.3Cr and Cu-40Zn. Texture of Cu-0.3Cr alloy is similar to that reported for pure copper. On the other hand, in Cu-40Zn alloy, texture evolution in α and β (B2) phases are interdependent. In Cu-0.3Cr alloy, there is a considerable decreases in volume fraction of low angle boundaries (LAGBs), only a slight increase in CSL boundaries, but increase in high angle grain boundaries (HAGBs) from 1 pass to 4 passes for both the routes. In the case of Cu-40Zn alloy, there is an appreciable increase in CSL volume fraction.
585
Abstract: Mg-Tb-Nd ternary alloy represents a novel hardenable Mg-based alloy with enhanced strength and favorable creep properties. In the present work we studied microstructure of ultra fine grained (UFG) Mg-Tb-Nd alloy prepared by high pressure torsion (HPT). Lattice defects introduced into the specimen by the severe plastic deformation play a key role in physical properties of UFG specimens. It is known that positron lifetime (PL) spectroscopy is highly sensitive to open volume defects (like vacancies, dislocations, etc.). Therefore, PL spectroscopy is an ideal tool for defect characterizations in the HPT deformed specimens. In the present work we combined PL studies with transmission electron microscopy and microhardness measurements. After detailed characterization of the as-deformed structure, the specimens were step-by-step isochronally annealed and we investigated the development of microstructure with increasing temperature.
591
Abstract: The microstructure and the mechanical properties of pure Fe after HPT-straining at a rotation-speed of 0.2 rpm under a compression pressure of 5 GPa were investigated. The elongated grains with 300 nm thick and 600 nm long were observed at r = 1.5 mm away from the disk center regions after HPT-straining for 5 turns ( εeq = 45). The obtained Vickers microhardness in the submicrocrystalline Fe after 5 turns was around Hv 3.6 GPa. The engineering tensile strength and total elongation of the HPT-processed Fe for 10 turns were 1.9 GPa and 30 %. These facts suggest that HPT-straining leads to significant refinement of microstructure and increase in strength with good ductility.
597
Abstract: New experimental data related to the grain size and the Bauschinger effects have been obtained for ferritic steels with grain size in the range of 3.5-22m. As the data show an increasing contribution of the kinematic hardening with grain size refinement, a new physical based model describing the isotropic hardening and the kinematic hardening is presented and validated with regard to the grain size. The consequences are discussed for fine grain metallic alloys.
605

Showing 91 to 100 of 176 Paper Titles