Electrochemical Formation and Corrosion Properties of Porous TiOx Biomaterials

Article Preview

Abstract:

Formation of porous TiOx layers on Ti during electrochemical etching in H3PO4, CH3COOH electrolytes modified by HF and NH4F was described. The anodization resulted in porous TiOx formation, useful in tissue growth and bone bonding. The pore dimensions increased due to the increase of HF or NH4F content in H3PO4 electrolyte. During anodization at 10 V for 30 min, when the HF content increased from 0.5 to 10%, the pore diameter increased from 30 nm up to 8 m, respectively. Anodization in CH3COOH electrolyte resulted in non-uniform etching with flat hexagonal islands with nanopores inside surrounded by micropores. Corrosion properties of the etched samples were investigated in Ringer’s solution at 37oC and were compared to the unetched sample. The best corrosion resistance showed the samples etched at 10 V for 30 min in 1M H3PO4 + 2% HF and 1M H3PO4 + 10% NH4F, what can be attributed to thick oxide layer. We find, that porous sample presented good biocompatibility with human osteoblasts.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 636-637)

Pages:

15-21

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W.C. Head, D.J. Bauk, R.H. Emerson, Clin Orthop Vol. 311 (1995), p.85.

Google Scholar

[2] G. Ryan, A. Pandit, D. P. Apatsidis, Biomaterials Vol. 27 (2006), p.2651.

Google Scholar

[3] W. Xue, V. Krishna, A. Bandyopadhyay, S. Bose, Acta Biomaterialia Vol. 3 (2007), p.1007.

Google Scholar

[4] J. -H. Lee, S. -E. Kim, Y. -J. Kim, Ch. -S. Chi, H.J. Oh, Mater. Chem. Phys. Vol. 98 (2006), p.39.

Google Scholar

[5] J. Jakubowicz, Electrochem. Commun. Vol. 10 (2008), p.735.

Google Scholar

[6] H. Tsuchiya, J.M. Macak, L. Taveira, E. Balaur, A. Ghicov, K. Sirotna, P. Shmuki, Electrochem. Commun. Vol. 7 (2005), p.576.

DOI: 10.1016/j.elecom.2005.04.008

Google Scholar

[7] E. Conforto, B. -O. Aronsson, A. Salito, C. Crestou, D. Caillar, Materials Sci. Eng. Vol. C24 (2004), p.611.

Google Scholar

[8] I. -H. Oh, N. Nomura, N. Masahashi, S. Hanada, Scripta Materialia Vol. 49 (2003), p.1197.

Google Scholar

[9] J.M. Macak, H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer, P. Schmuki, Current Opinion in Solid State and Materials Science, Vol. 11 (2007), p.3.

DOI: 10.1016/j.cossms.2007.08.004

Google Scholar

[10] A. Ghicov, P. Schmuki, Chem. Comm., (2009) 2791; DOI: 10. 1039/b822726h.

Google Scholar

[11] J. Park, S. Bauer, K. von der Mark, P. Schmuki, Nano Letters, Vol. 7 (2007), p.1686.

Google Scholar

[12] J. Park, S. Bauer, K.A. Schlegel, F.W. Neukam, K. von der Mark, P. Schmuki, Small Vol. 6 (2009), p.666.

Google Scholar

[13] B. Yang, M. Uchida, H.M. Kim, X. Zhang, T. Kokubo, Biomaterials Vol. 25 (2004), p.1003.

Google Scholar

[14] J. -L. Deplancke, M. Degrez, A. Fontana, R. Winand, Surf. Technol. Vol. 16 (1982), p.153.

Google Scholar

[15] R. Beranek, H. Hildebrand, P. Schmuki, Electrochem. Solid-State Lett. Vol. 6 (2003), p. B12.

Google Scholar

[16] J. Jakubowicz, K. Jurczyk, K. Niespodziana, M. Jurczyk, Electrochem. Commun. Vol. 11 (2009), p.461.

Google Scholar