Chlorapatite Conversion to Hydroxyapatite under High Temperature Hydrothermal Conditions

Article Preview

Abstract:

The need for biomaterials in dental and orthopedic applications has increased as the world population ages. Synthetic calcium phosphate bioceramics and calcium phosphate cements are proved potential substitutes for bone and teeth due to their structural and crystallographic similarities with the biological apatites, and their biocompatibility but they show poor mechanical properties. Chlorapatite and hydroxyapatite whiskers with high aspect ratio can be used to improve this drawback. This work describes a method to transform chlorapatite single crystals into hydroxyapatite whiskers, suitable for the reinforcement of calcium phosphate bioceramics and calcium phosphate cements. Hydroxyapatite whiskers were obtained by treating chlorapatite single crystals in high-temperature hydrothermal conditions. The variable studied was furnace temperature with and without moisture conditions. The characterization of the chlorapatite and hydroxyapatite whiskers was carried out by SEM, XRD, EDS and FTIR. SXRD data were analyzed for the description of the chlorapatite structure.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 636-637)

Pages:

9-14

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Hollinger, J.O., et al., Role of bone substitutes. Clinical orthopaedics and related research, 1996(324): pp.55-65.

DOI: 10.1097/00003086-199603000-00008

Google Scholar

[2] Hench, L.L., Bioceramics: from concept to clinic. Journal of the American Ceramic Society, Vol. 74(7) (1991), pp.1487-1510.

DOI: 10.1111/j.1151-2916.1991.tb07132.x

Google Scholar

[3] Hench, L.L. and J. Wilson, An introduction to bioceramics. 1993: World Scientific.

Google Scholar

[4] Franco, J., et al., Procesamiento cerámico de ß-TCP para la fabricación de piezas implantables. Editores Asociados.

DOI: 10.3989/cyv.2006.v45.i4.283

Google Scholar

[5] Saadi, L., et al., Synthesis of mullite precursors in molten salts. Influence of the molten alkali nitrate and additives. Journal of the European Ceramic Society, Vol. 19(4) (1999), pp.517-520.

DOI: 10.1016/s0955-2219(98)00220-9

Google Scholar

[6] Franco J., G. -T.E., Guitián F. Obtención de monocristales de fosfato cálcico en sales fundidas a partir de β-TCP. in IX Congreso . acional de Materiales. Perspectiva de la investigación sobre materiales en España en el siglo XXI. 2006. Vigo, España: Servicio de Publicaciones de la Universidad de Vigo.

DOI: 10.7764/cdi.29.247

Google Scholar

[7] Tas, A.C., Molten salt synthesis of calcium hydroxyapatite whiskers. Journal of the American Ceramic Society, Vol. 84(2) (2001), pp.295-300.

DOI: 10.1111/j.1151-2916.2001.tb00653.x

Google Scholar

[8] Rendon-Angeles, J.C., et al., Effect of metal ions of chlorapatites on the topotaxial replacement by hydroxyapatite under hydrothermal conditions. Journal of Solid State Chemistry, Vol. 154(2) (2000), pp.569-578.

DOI: 10.1006/jssc.2000.8888

Google Scholar

[9] Rendon-Angeles, J.C., et al., Topotaxial conversion of chlorapatite and hydroxyapatite to fluorapatite by hydrothermal ion exchange. Chem. Mater, Vol. 12(8) (2000), pp.2143-2150.

DOI: 10.1021/cm990797x

Google Scholar

[10] García-Tuñón E., F.J., Dacuña B., Zaragoza G., Guitián F., Obtención y caracterización de monocristales de fosfatos cálcicos empleando el método de asles fundidas. Bol. Soc. Esp. Ceram. V., Vol. 48(2) (2009), pp.53-64.

Google Scholar

[11] Altomare, A., et al., SIR97: a new tool for crystal structure determination and refinement. Journal of Applied Crystallography, Vol. 32(1) (1999), pp.115-119.

Google Scholar

[12] Sheldrick, G.M., SHELX97-Programs for Crystal Structure Analysis (Release 97-2). University of Göttingen, Germany, (1998).

Google Scholar

[13] Le Bail, A., H. Duroy, and J.L. Fourquet, Ab-initio structure determination of LiSbWO? 6 ? by X-ray powder diffraction. Materials Research Bulletin, Vol. 23(3) (1988) pp.447-452.

DOI: 10.1016/0025-5408(88)90019-0

Google Scholar

[14] White, T.J. and Z.L. Dong, Structural derivation and crystal chemistry of apatites. Acta Crystallographica Section B: Structural Science, Vol. 59(1) (2003) pp.1-16.

Google Scholar

[15] Kim, J.Y., et al., Powder diffraction studies of synthetic calcium and lead apatites. Australian Journal of Chemistry, Vol. 53(8) (2000) pp.679-686.

Google Scholar