Grain Boundary Character of 9Cr Feritic/Martensitic Heat Resistant Steels Strengthened by Nano-Sized MX Precipitates

Article Preview

Abstract:

In this work, two heats of 9Cr ferritic/martensitic heat resistant steels with different carbon and nitrogen contents were prepared. The steels were designed to have much lower carbon content than conventional 9-12Cr heat resistant steels for obtaining dense nano-sized MX precipitates. Microstructure of the two steels in different heat treatment states was analyzed by electron backscatter diffraction (EBSD) method. The results show that grain boundary character is greatly affected by carbon and nitrogen contents. Martensite in the steel with 0.02wt.% carbon and ultra low nitrogen is easier to recrystallize than that in the steel with ultra low carbon and 0.03wt.% nitrogen during tempering treatment. The effect of grain boundary character on stress rupture properties is also discussed.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 638-642)

Pages:

2882-2887

Citation:

Online since:

January 2010

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Muneki, H. Okada, H. Okubo, M. Igarashi, F. Abe, Mater. Sci. Eng. A 406 (2005), p.43.

Google Scholar

[2] R.L. Klueh, N. Hashimoto and P.J. Maziasz, Scripta Mater. 53 (2005), p.275.

Google Scholar

[3] F. Abe, M. Taneike and K. Sawada, Int. J. Pres. Ves. Pip. 84 (2007), p.3.

Google Scholar

[4] J. Hald. Int. J. Pres. Ves. Pip. 85 (2008), p.30.

Google Scholar

[5] R. Agamennone, W. Blum, C. Gupta, J.K. Chakravartty. Acta Mater. 54 (2006), p.3003.

Google Scholar

[6] F.S. Yin, W. S Jung, J. of Mater. Proc. Tech. 209(2009), p.181.

Google Scholar

[7] M. Taneike, F. Abe and K. Sawada, Nature 424 (2003), p.294.

Google Scholar

[8] F.S. Yin, W. S Jung, S.H. Chung. Sctipta Mater. 57 (2007), p.469.

Google Scholar

[9] F.S. Yin and W.S. Jung. Metall. Mater. Trans. A, 40A(2009), p.302.

Google Scholar

[10] W.G. Wang, F.X. Yin, H. Guo,H. Li, B.X. Zhou, Mater. Sci. Eng. A 491 (2008), p.199.

Google Scholar

[11] X.Y. Fang, K. Zhang, H. Guo, W.G. Wang, B.X. Zhou. Mater. Sci. Eng. A, 487(2008), p.7.

Google Scholar

[12] X.Y. Fang, W.G. Wang, H. Guo, X. Zhang, B.X. Zhou. J. Iron Steel Res. Inter., vol. 14, Suppl. 1, (2007), p.339.

Google Scholar

[13] M.A. Arafin, J.A. Szpunar. Corr. Sci., 51(2009), p.119.

Google Scholar

[14] J. J. Sanchez-Hanton, R. C. Thomson. Mater. Sci. Eng. A, 460-461 (2007), p.261.

Google Scholar

[15] B. Sonderegger, S. Mitsche, H. Cerjak. Mater. Sci. Eng. A, 481-482 (2008), p.466.

Google Scholar

[16] B. Sonderegger, S. Mitsche, H. Cerjak. Mater. Character. 58 (2007), p.874.

Google Scholar

[17] M. X. Zhang, P.M. Kelly, L.K. Bekessy, J.D. Gates. Mater. Character. 45 (2000), p.39.

Google Scholar