Growth Stresses and Phase Development in Nanostructured Oxide Scales Formed on Iron Aluminides

Article Preview

Abstract:

The evolution of phase composition and growth stresses in oxide scales growing on the polycrystalline Fe-15at.%Al alloy at 700°C in air was studied by in-situ synchrotron X-ray diffraction and X-ray photoelectron spectroscopy. The oxidation kinetics was determined by thermogravimetry. The results showed that, under these conditions, metastable -Al2O3 appears only during the first minutes of oxidation and the main oxides formed since the early oxidation are -Al2O3 and -Fe2O3. High volume fractions of -Fe2O3 caused accelerated oxidation rates in the first hours. -Al2O3 and -Fe2O3 grow epitaxially, evolving compressive and tensile growth stresses, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 638-642)

Pages:

2903-2908

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Prescott, M. J. Graham, Oxid. Met. 38 (1992) p.73.

Google Scholar

[2] H. J. Grabke, Intermetallics 7 (1999) p.1153.

Google Scholar

[3] V. K. Tolpygo, D. R. Clarke, Sur. Coat. Tech. 120-121 (1999) p.1.

Google Scholar

[4] E. Schumann, C. Sarioglu, J. R. Blachere, F. S. Pettit, G. H. Meier, Oxid. Met. 53 (2000) p.259.

Google Scholar

[5] G. Sarioglu, M. J. Stiger, J. R. Blachere, R. Janakiraman, E. Schumann, A. Ashary, F. S. Pettit, G. H. Meier, Mater. Corros. 51, (2000) p.358.

DOI: 10.1002/(sici)1521-4176(200005)51:5<358::aid-maco358>3.0.co;2-c

Google Scholar

[6] K. Messaoudi, A. M. Huntz, L. Di Menza, Oxid. Met. 53 (2000) p.49.

Google Scholar

[7] C. Mennicke, D. R. Clarke, M. Rühle, Oxid. Met. 55 (2001) p.551.

Google Scholar

[8] D. R. Clarke, Curr. Opin. Solid State Mater. Sci. 6 (2002) p.237.

Google Scholar

[9] H. Eschler, E. A. Martinez, L. Singheiser, Mater. Sci. Eng., A 384 (2004) p.1.

Google Scholar

[10] A. M. Huntz, P. Y. Hou, R. Molins, Mater. Sci. Eng., A. 467 (2007) p.59.

Google Scholar

[11] I. Levin, D. Brandon, J. Am. Ceram. Soc. 81(8) (1998) p. (1995).

Google Scholar

[12] G. V. Samsonov, The Oxide Handbook, Second Edition, p.183, ed., IFI/Plenum, New York (1982).

Google Scholar

[13] B. Pöter, F. Stein, R. Wirth, M. Spiegel, Z. Phys. Chem. 219 (2005) p.1489.

Google Scholar

[14] E. D. Specht, P. F. Tortorelli, P. Zschack, Powder Diffr. 19(1) (2004) p.69.

Google Scholar

[15] P. Y. Hou, A. P. Paulikas, B. W. Veal, Mater. Sci. Forum 522-523 (2006) p.433.

Google Scholar

[16] B. W. Veal, A. P. Paulikas, P. Y. Hou, Nat. Mater. 5 (2006) p.349.

Google Scholar

[17] H. E. Evans, Int. Mat. Rev., 40 (1), 1 (1995).

Google Scholar

[18] D. R. Clarke, Acta Mater. 51 (2003) p.1393.

Google Scholar

[19] B. Panicaud, J. L. Grosseau-Poussard, J. F. Dinhut, Appl. Surf. Sci. 252 (2006) p.5700.

Google Scholar

[20] C. -H. Ma, J. -H. Huang, H. Chen, Thin Solid Films 418 (2002) p.73.

Google Scholar

[21] L. Lutterotti, S. Matthies, H. -R. Wenk, Proceeding of the Twelfth International Conference on Textures of Materials (ICOTOM-12), Vol. 1 (1999) p.1599.

Google Scholar

[22] A. Velon, I. Olefjord, Oxid. Met. 56 (2001) p.425.

Google Scholar

[23] H. Asteman, M. Spiegel, Corr. Sci. 50 (2008) p.1734.

Google Scholar

[24] D. Renusch, M. Grimsditch, I. Koshelev, B. W. Veal, P. Y. Hou, Oxid. Met. 48 (1997) p.471.

DOI: 10.1007/bf02153461

Google Scholar

[25] A. Limarga, D. Wilkinson, G. Weatherly, Scripta Mater. 50 (2004) p.1475.

Google Scholar

[26] C. -M. Wang, S. Thevuthasan, F. Gao, D. E. McCready, S. A. Chambers, Thin Solid Films 414 (2002) p.31.

Google Scholar

[27] I. J. Lee, J. -Y. Kim, C. Yu, C. -H. Chang, M. -K. Joo, Y. P. Lee, T. -B. Hur, H. -K. Kim, J. Vac. Sci. Technol. A 23(5) (2005) p.1450.

Google Scholar

[28] M. E. Fitzpatrick, M. T. Hutchings, P. J. Withers, Acta mater. 45 (1997), No. 12, p.4867.

Google Scholar