Ultrananocrystalline Diamond/Hydrogenated Amorphous Carbon Films Prepared by a Coaxial Arc Plasma Gun

Article Preview

Abstract:

Growth of ultrananocrystalline diamond (UNCD)/hydrogenated amorphous carbon (a-C:H) composite films without initial nucleation was realized by an coaxial arc plasma gun at a substrate-temperature of 550 °C and hydrogen-atmosphere of 53.3 Pa. The pulsed arc discharge was triggered at a repetition rate of 1 Hz. The deposition rate was 80 nm/min. X-ray diffraction measurements with 12-keV X-rays from synchrotron radiation indicated extremely broad rings from diamond and none from graphite. The UNCD crystallite diameters were estimated to be approximately 1.3 nanometers by using Scherrer’s equation. The sp3/(sp2+sp3) was estimated to be approximately 57% from the X-ray photoemission spectroscopy. The coaxial arc plasma gun is a new powerful method that might enable us to realize the supersaturated condition with highly energetic ions for the growth of UNCD.

You might also be interested in these eBooks

Info:

[1] I. Gouzman, S. Michaelson and A. Hoffman, in: Ultrananocrystalline Diamond Synthesis, Properties, and Applications, edited by A. Shenderova and D, M. Gruen, Materials Science and Process Technology Series, chapter, 7, Williams Andrew Publishing (2006).

Google Scholar

[2] T. Hara, T. Yoshitake, T. Fukugawa, H. Kubo, M. Itakura, N. Kuwano and K. Nagayama: Diamond Relat. Mater. Vol. 15 (2006), p.649.

DOI: 10.1016/j.diamond.2005.12.015

Google Scholar

[3] P. Badziag, W.S. Verwoerd, W.P. Ellis and N.R. Greiner: Nature Vol. 343 (1990), p.244.

Google Scholar

[4] Y. Yao, M. Y. Liao, Th. Köhler, Th. Frauenheim, R. Q. Zhang, Z. G. Wang, Y. Lifshitz and S. T. Lee: Phys. Rev. B Vol. 72 (2005), 035402.

Google Scholar

[5] W. Kulisch, in: Deposition of Diamond-Like Superhard Materials, edited by G. Höhler, volume 157 of Springer Tracts in Modern Physics, chapter, 4, Springer (1999).

DOI: 10.1007/bfb0109585

Google Scholar

[6] T. Yoshitake, A. Nagano, M. Itakura, N. Kuwano, T. Hara and K. Nagayama: Jpn. J. Appl. Phys. Vol. 46 (2007), p. L936.

DOI: 10.1143/jjap.46.l936

Google Scholar

[7] M. Chhowalla, C. A. Davis, M. Weiler, B. Kleinsorge and G. A. J. Amaratunga: J. Appl. Phys. Vol. 79 (1996), p.2237.

Google Scholar

[8] D. Liu, G. Benstetter, E. Lodermeier, J. Zhang, Y. Liu, and J. Vancea: J. Appl. Phys. Vol. 95 (2004), p.7624.

Google Scholar

[9] J. Filik, P. W. May, S. R. J. Pearce, R. K. Wild and K. R. Hallam: Diamond Relat. Mater. Vol. 12 (2003), p.974.

Google Scholar

[10] D. A. Shirley: Phys. Rev. B Vol. 5 (1972), P. 4709.

Google Scholar

[11] T. Y. Leung, W. F. Man, P. K. Lim, W. C. Chan, F. Gaspari and S. Zukotynski: J. Non-Cryst. Solids Vol. 254 (1999), p.156.

Google Scholar

[12] D. Ballutaud, N. Simon, H. Girard, E. Rzepka, B. Bouchet-Frabe, Diamond Relat. Mater. Vol. 15 (2006), p.716.

Google Scholar

[13] A. A. Ogwu, R. W. Lamberton, S. Morley, P. Maguire, J. McLaughlin: Physica B Vol. 269 (1999), p.335.

Google Scholar

[14] T. Yoshitake, A. Nagano, S. Ohmagari, M. Itakura, N. Kuwano, R. Ohtani, H. Setoyama, E. Kobayashi and K. Nagayama: Jpn. J. Appl. Phys. Vol. 48 (2009), 020222.

DOI: 10.1143/jjap.48.020222

Google Scholar

[15] S. Michaelson, O. Ternyak, A. Hoffman, O. A. Williams, and D. M. Gruen: Appl. Phys. Lett. Vol. 91 (2007), 103104.

Google Scholar

[16] T. Yoshitake, T. Hara, T. Fukugawa, L. Zhu, M. Itakura, N. Kuwano, Y. Tomokiyo and K. Nagayama: Jpn. J. Appl. Phys. Vol. 43 (2004), p. L240.

DOI: 10.1143/jjap.43.l240

Google Scholar