Tailoring Exchange Coupling between Magnetic Nano-Grains of High Density Magnetic Recording Media

Article Preview

Abstract:

Intergranular exchange coupling between magnetic nano-grains is one of important parameters to develop magnetic recording media towards the areal density of 1000 Gbits/in2. In this presentation, various processings, involving oxide co-sputtering for perpendicular media, spontaneous phase separation for longitudinal media, and grain boundary (GB) diffusion derived from underlayer or overlayer to induce tunable exchange coupling, have been reviewed to tailor the exchange coupling, including their main principles, present achievements and engineering challenges. Much attention is paid to the physical origin of magnetically induced phase separation of Co-Cr-based alloy, which governs media noise and coercivity, and its applications to the longitudinal media. A proposal of GB diffusion is also highlighted in detail to show a feasibility to tailor the exchange coupling, including calculation results and experimental evidences.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 638-642)

Pages:

2944-2949

Citation:

Online since:

January 2010

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Information on http: /www. physorg. com/news136815757. html.

Google Scholar

[2] G.W. Qin, Y. P. Ren, B. Yang, N. Xiao, L. Zuo and K. Oikawa: Submitted to International Materials Reviews (2009).

Google Scholar

[3] H. J. Richter: J. Phys. D Vol. 32 (1999), p.147; ibid., Vol. 40(2007), p.149.

Google Scholar

[4] D. Weller and M.F. Doerner: Annu. Rev. Mater. Sci. Vol. 30 (2000), p.611.

Google Scholar

[5] T. Shimatsu, H. Sato, T. Oikawa, Y. Inaba, O. Kitakami, S. Okamoto, H. Aoi and Y. Nakamura: IEEE Trans. Magn. Vol. 41(2005), p.566.

DOI: 10.1109/tmag.2004.838071

Google Scholar

[6] O. Chubykalo, B. Lengsfield, J. Kaufman, B. Jones: J. Appl. Phys. Vol. 91 (2002), p.3129.

Google Scholar

[7] H. Zhou and H. N . Bertram: IEEE Trans. Magn. Vol. 38 (2002), p.1405.

Google Scholar

[8] X. Z. Cheng and M. B. A. Jalil: IEEE Trans. Magn. Vol. 41 (2005), p.3115.

Google Scholar

[9] Q. Peng and H. N. Bertram: IEEE Trans. Magn. Vol. 32 (1996), p.3566.

Google Scholar

[10] J. S. Goldberg and H. Zhou: IEEE Trans. Magn. Vol. 40 (2004), p.2558.

Google Scholar

[11] T. Nishizawa, M. Ko, and M. Hasebe: Acta Metall. Vol. 27 (1979), p.817.

Google Scholar

[12] M. Hasebe, K. Oikawa and T. Nishizawa: J. Jpn. Inst. Met. Vol. 46 (1982), p.577.

Google Scholar

[13] Y. Maeda, S. Hirono and M. Asahi: Japn. J. Appl. Phys. Vol. 24 (1985), p. L951.

Google Scholar

[14] G. W. Qin, K. Oikawa, T. Ikeshoji and K. Ishida.: J. Magn. Magn. Mater. Vol. 234 (2001), p.1.

Google Scholar

[15] K. Oikawa, G. W. Qin, O. Kitakami and K. Ishida: Appl. Phys. Lett. Vol. 79 (2001), p.644.

Google Scholar

[16] K. Oikawa, G. W. Qin, T. Ikeshoji, and K. Ishida: J. Magn. Magn. Mater. Vol. 236 (2001), p.220.

Google Scholar

[17] K. Oikawa, G. W. Qin, S. Okamoto, K. Ishida and Y. Shimada: Appl. Phys. Lett. Vol. 80 (2002), p.2704.

Google Scholar

[18] S. L. Duan, J. O. Artman, K. Hono and D. E. Laughlin: J. Appl. Phys. Vol. 67(1990), p.4704.

Google Scholar

[19] J. Zou, B. Bian, D. E. Laughlin and D. N. Lambeth: IEEE Trans. Magn. Vol. 37 (2001), p.1471.

Google Scholar

[20] J. C. Fisher: J. Appl. Phys. Vol. 22 (1951), p.74.

Google Scholar

[21] G.W. Qin, B. Yang, W. L. Pei and Y. P. Ren: J. Mater. Sci. Tech. (2009), in press.

Google Scholar

[22] J. G. Pellerin, S. G. H. Anderson and P. S. Ho: J. Appl. Phys. Vol. 75 (1994), p.5052.

Google Scholar

[23] J. G. Zhu and H. N. Bertram: J. Appl. Phys. Vol. 63(1998), p.3248.

Google Scholar

[24] J. E. Witting, T. P. Nolan, R. Sinclair and J. Bentley: Mater. Res. Soc. Symp. Proc. Vol. 517 (1998), p.211.

Google Scholar