Doping of ZnO Thin Film with Eu Using Ion Beams

Article Preview

Abstract:

Modification of electric and magnetic properties of ZnO thin films was achieved by low energy Eu ion irradiation. The desired doping levels as well as the depth distribution of the dopant was controlled by the ion energy and the ion flux, following a simulated interaction between the doping ion and the host ZnO matrix of epitaxial ZnO (0001) films of approximatelly 200nm, grown on c-Al2O3 by PLD. The properties of the doped ZnO film depend in a critical way on the homogeneity of the doped ions throughout the entire film. The doping levels and the depth distribution of dopants were measured by elastic recoil detection analysis (ERDA). The results show a uniform depth distribution of Eu, as well as some level of Al diffusion from the substrate and the presence of some low levels of H, N and O. PACS code: 68.49Sf; 74.78Bz

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 638-642)

Pages:

2962-2969

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Tsukazaki, A. Ohtomo, T. Omura, M. Ohtani, T. Makino, M. Sumyia, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, M. Kawasaki, Nat. Mat. 4, 42, (2005).

DOI: 10.1038/nmat1284

Google Scholar

[2] P. Gopal, N. A. Spaldin, J. Electr. Mat. 35, 538, (2006).

Google Scholar

[3] U. Ozgur, X. Gu, S. Chevtchenko, J. Spradlin, S. J. Cho, H. Morkoc, F. H. Pollak, H. O. Everitt, B. Nemeth, J. E. Nause, J. Electr. Mat. 35, 550, (2006).

DOI: 10.1007/s11664-006-0098-9

Google Scholar

[4] F. Matsukura, H. Ohno, A. Shen, and Y. Sugawara, Phys. Rev. B 57, R2037, (1998).

Google Scholar

[5] H. Ohno, Science 281, 951 (1998).

Google Scholar

[6] T. Monteiro, A.J. Neves, M.C. Carmo, M.J. Soares, M. Peres, E. Alves, E. Rita, U. Wahl, Superlattices Microstruct. 39, 202 (2006).

DOI: 10.1016/j.spmi.2005.08.043

Google Scholar

[7] Y. Yang, H. Lai, H. Xu, C. Tao, H. Yang, J. Nanopart. Res. DOI 10. 1007/s1051-0099598-x, (2009).

Google Scholar

[8] A. S. Risbud, N. A. Spaldin, Z. Q. Chen, S. Stemmer, and Ram Seshadri, Phys. Rev. B 68, 205202 (2003).

Google Scholar

[9] J. H. Kim, H. Kim, Y. E. Ihm, W. K. Choo, J. Appl. Phys. 92, 6066 (2002).

Google Scholar

[10] L. Armelao, F. Heig, A. Ju1rgensen, R. I. R. Blyth, T. Regier, X. -T. Zhou, T. K. Sham, J. Phys. Chem. C 111, 10194, (2007).

Google Scholar

[11] A. Anders, Phys. Rev. E 55, 969, (1997).

Google Scholar

[12] J. W. Martin, D. D. Cohen, N. Dytlewski, D. B. Garton, H. J. Whitlow, G. J. Russell NIM-B, vol. 94, 277, (1994).

Google Scholar

[13] J.F. Ziegler, The Stopping and Ranges of Ions in Matter, Pergamon Press, Elmsford, New York, vol. 4, (1977).

Google Scholar

[14] U. Ozgur, Ya I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc, J. Appl. Phys. 98 (4), 041301, (2005).

Google Scholar

[15] T. Pauporte and T. Yoshida, Journal of Mat. Chem. 16 (46), 4529, (2006).

Google Scholar

[16] J. Tauc, Amorphous and Liquid Semiconductors (London, Plenum, 1974), pp.173-178.

Google Scholar

[16] F. Fuchs, J. Furthmuller, F. Bechstedt, M. Sishkin, K. Kresse, Phys. Rev. B 76, 115109, (2007).

Google Scholar

[2] as function of frequency for transmission spectra of virgin ZnO film, and ZnO film doped with 1at%, 2at%, 3at% and 4at% Eu Fig. 5: Ground state BS calculation on ZnO, and ZnO where Zn was replaced by Eu in a proportion of 1at%, 3at% and 4at% Figures.

Google Scholar

600 1200 1800 2400 3000 3600 4200 4800 5400 6000 0. 0 0. 1 0. 2 0. 3 0. 4 0. 5 0. 6 0. 7 Concentration [x100 at%] Depth [ML] H C N O Al Zn Fig. 1.

Google Scholar

600 1200 1800 2400 3000 3600 4200 4800 5400 6000 0. 0 0. 1 0. 2 0. 3 0. 4 0. 5 0. 6 0. 7 Concentration [x100 at%] Depth [ML] H C N O Al Zn Eu Fig. 2 Figure 3 2. 0 2. 2 2. 4 2. 6 2. 8 3. 0 3. 2 3. 4 3. 6.

Google Scholar

[1] [2] [3] [4] [5] ZnO ZnO + Eu 1% ZnO + Eu 2% ZnO + Eu 3% ZnO + Eu 4% (ααααhυυυυ))2222 [[x10.

DOI: 10.1021/acs.iecr.2c04350.s001

Google Scholar

[11] cm-2 eV2 ] hυυυυ (eV) Figure 4 -3 -2 -1.

Google Scholar

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] Band Energy [eV] HCP Brillouin Zone Dirrection Γ K M 3. 2eV ZnO+0at% Eu -3 -2 -1.

Google Scholar

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] Band Energy [eV] HCP Brillouin Zone Dirrection Γ K M 2. 7eV ZnO+3at% Eu Figure 5 -3 -2 -1.

Google Scholar

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] Band Energy [eV] HCP Brillouin Zone Dirrection Γ K M 3. 1eV ZnO+1at% Eu -3 -2 -1.

Google Scholar

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] Band Energy [eV] HCP Brillouin Zone Dirrection Γ K M 2. 2eV ZnO+4at% Eu.

Google Scholar