[1]
A. Tsukazaki, A. Ohtomo, T. Omura, M. Ohtani, T. Makino, M. Sumyia, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, M. Kawasaki, Nat. Mat. 4, 42, (2005).
DOI: 10.1038/nmat1284
Google Scholar
[2]
P. Gopal, N. A. Spaldin, J. Electr. Mat. 35, 538, (2006).
Google Scholar
[3]
U. Ozgur, X. Gu, S. Chevtchenko, J. Spradlin, S. J. Cho, H. Morkoc, F. H. Pollak, H. O. Everitt, B. Nemeth, J. E. Nause, J. Electr. Mat. 35, 550, (2006).
DOI: 10.1007/s11664-006-0098-9
Google Scholar
[4]
F. Matsukura, H. Ohno, A. Shen, and Y. Sugawara, Phys. Rev. B 57, R2037, (1998).
Google Scholar
[5]
H. Ohno, Science 281, 951 (1998).
Google Scholar
[6]
T. Monteiro, A.J. Neves, M.C. Carmo, M.J. Soares, M. Peres, E. Alves, E. Rita, U. Wahl, Superlattices Microstruct. 39, 202 (2006).
DOI: 10.1016/j.spmi.2005.08.043
Google Scholar
[7]
Y. Yang, H. Lai, H. Xu, C. Tao, H. Yang, J. Nanopart. Res. DOI 10. 1007/s1051-0099598-x, (2009).
Google Scholar
[8]
A. S. Risbud, N. A. Spaldin, Z. Q. Chen, S. Stemmer, and Ram Seshadri, Phys. Rev. B 68, 205202 (2003).
Google Scholar
[9]
J. H. Kim, H. Kim, Y. E. Ihm, W. K. Choo, J. Appl. Phys. 92, 6066 (2002).
Google Scholar
[10]
L. Armelao, F. Heig, A. Ju1rgensen, R. I. R. Blyth, T. Regier, X. -T. Zhou, T. K. Sham, J. Phys. Chem. C 111, 10194, (2007).
Google Scholar
[11]
A. Anders, Phys. Rev. E 55, 969, (1997).
Google Scholar
[12]
J. W. Martin, D. D. Cohen, N. Dytlewski, D. B. Garton, H. J. Whitlow, G. J. Russell NIM-B, vol. 94, 277, (1994).
Google Scholar
[13]
J.F. Ziegler, The Stopping and Ranges of Ions in Matter, Pergamon Press, Elmsford, New York, vol. 4, (1977).
Google Scholar
[14]
U. Ozgur, Ya I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc, J. Appl. Phys. 98 (4), 041301, (2005).
Google Scholar
[15]
T. Pauporte and T. Yoshida, Journal of Mat. Chem. 16 (46), 4529, (2006).
Google Scholar
[16]
J. Tauc, Amorphous and Liquid Semiconductors (London, Plenum, 1974), pp.173-178.
Google Scholar
[16]
F. Fuchs, J. Furthmuller, F. Bechstedt, M. Sishkin, K. Kresse, Phys. Rev. B 76, 115109, (2007).
Google Scholar
[2]
as function of frequency for transmission spectra of virgin ZnO film, and ZnO film doped with 1at%, 2at%, 3at% and 4at% Eu Fig. 5: Ground state BS calculation on ZnO, and ZnO where Zn was replaced by Eu in a proportion of 1at%, 3at% and 4at% Figures.
Google Scholar
600 1200 1800 2400 3000 3600 4200 4800 5400 6000 0. 0 0. 1 0. 2 0. 3 0. 4 0. 5 0. 6 0. 7 Concentration [x100 at%] Depth [ML] H C N O Al Zn Fig. 1.
Google Scholar
600 1200 1800 2400 3000 3600 4200 4800 5400 6000 0. 0 0. 1 0. 2 0. 3 0. 4 0. 5 0. 6 0. 7 Concentration [x100 at%] Depth [ML] H C N O Al Zn Eu Fig. 2 Figure 3 2. 0 2. 2 2. 4 2. 6 2. 8 3. 0 3. 2 3. 4 3. 6.
Google Scholar
[1] [2] [3] [4] [5] ZnO ZnO + Eu 1% ZnO + Eu 2% ZnO + Eu 3% ZnO + Eu 4% (ααααhυυυυ))2222 [[x10.
DOI: 10.1021/acs.iecr.2c04350.s001
Google Scholar
[11]
cm-2 eV2 ] hυυυυ (eV) Figure 4 -3 -2 -1.
Google Scholar
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] Band Energy [eV] HCP Brillouin Zone Dirrection Γ K M 3. 2eV ZnO+0at% Eu -3 -2 -1.
Google Scholar
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] Band Energy [eV] HCP Brillouin Zone Dirrection Γ K M 2. 7eV ZnO+3at% Eu Figure 5 -3 -2 -1.
Google Scholar
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] Band Energy [eV] HCP Brillouin Zone Dirrection Γ K M 3. 1eV ZnO+1at% Eu -3 -2 -1.
Google Scholar
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] Band Energy [eV] HCP Brillouin Zone Dirrection Γ K M 2. 2eV ZnO+4at% Eu.
Google Scholar