In Situ S-Doping of Cubic Boron Nitride Thin Films by Plasma Enhanced Chemical Vapor Deposition

Article Preview

Abstract:

In situ sulphur doping of cubic boron nitride (cBN) films was investigated by adding H2S into a plasma-enhanced chemical vapor deposition system. It was found that the nucleation of cBN was suppressed severely with a very low H2S concentration, while cBN could be grown continuously even at a H2S concentration as high as that of the boron source after its nucleation. Accordingly, S was incorporated into cBN films meanwhile keeping the cubic phase concentration as high as 95%. And a rectification ratio of approximately 10 5 was observed at room temperature for heterojunction diodes prepared by depositing S-doped cBN films on p-type silicon substrates, which suggests the possibility of an n-type-like doping. Moreover, 1500K post annealing of cBN films in H2 atmosphere was found to be able to release the residual compressive stress evidently. Thus, film adhesion strength increased markedly, and cBN films reached a thickness over 200 nm without peeling off from silicon and quartz substrates in air after 9 months.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 638-642)

Pages:

2956-2961

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Vel and G. Demazeau: Mater. Sci. Eng. B Vol. 10 (1991), p.149.

Google Scholar

[2] T. Yoshida: Diamond Relat. Mater. Vol. 5 (1996), p.501.

Google Scholar

[3] P. B. Mirkarimi, K. F. McCarty, and D. L. Medlin: Mater. Sci. Eng. R Vol. 21 (1997), p.47.

Google Scholar

[4] C. B. Samantaray and R. N. Singh: Int. Mater. Rev. Vol. 50 (2005), p.313.

Google Scholar

[5] O. Mishima, J. Tanaka, S. Yamaoka, and O. Fukunaka: Science Vol. 238 (1987), p.181.

Google Scholar

[6] H. S. Yang, C. Iwamoto, and T. Yoshida: Thin Solid Films Vol. 407 (2002), p.67.

Google Scholar

[7] X. W. Zhang, H. G. Boyen, N. Deyneka, P. Ziemann, F. Banhart, and M. Schreck, Nat. Mater. Vol. 2 (2003), p.312.

Google Scholar

[8] W. J. Zhang, I. Bello, Y. Lifshitz, K. M. Chan, X. Meng, Y. Wu, C. Y. Chan, and S. T. Lee: Adv. Mater. Vol. 16 (2004), p.1405.

Google Scholar

[9] D. Litvinov, C. A. Taylor II, and R. Clarke: Diamond Relat. Mater. 7 (1998), p.360.

Google Scholar

[10] K. Nose, K. Tachibana, and T. Yoshida: Appl. Phys. Lett. Vol. 83 (2003), p.943.

Google Scholar

[11] K. Nose, H. S. Yang, and T. Yoshida: Diamond Relat. Mater. Vol. 14 (2005), p.1297.

Google Scholar

[12] K. Nose, H. Oba, and T. Yoshida: Appl. Phys. Lett. Vol. 89 (2006), p.112114.

Google Scholar

[13] H. Yin, I. Pongrac, and P. Ziemann: J. Appl. Phys. Vol. 104 (2008), p.023703.

Google Scholar

[14] K. Kojima, K. Nose, M. Kambara, and T. Yoshida: J. Phys. D: Appl. Phys. Vol. 42 (2009) in press.

Google Scholar

[15] H. S. Yang, C. Iwamoto, and T. Yoshida: J. Appl. Phys. Vol. 94 (2003), p.1248.

Google Scholar

[16] H. S. Yang, C. Iwamoto, and T. Yoshida: Diamond Relat. Mater. Vol. 16 (2007), p.642.

Google Scholar

[17] C. Ronning, A. D. Banks, B. L. McCarson, R. Schlesser, Z. Sitar, R. F. Davis, B. L. Ward, and R. J. Nemanich: J. Appl. Phys. Vol. 84 (1998), p.5046.

DOI: 10.1063/1.368752

Google Scholar

[18] H. Oba, K. Nose, and T. Yoshida: Surf. Coat. Technol. Vol. 201 (2007), p.5502.

Google Scholar

[19] H. S. Yang: Acta Physica Sinica Vol. 55 (2006), p.4238.

Google Scholar

[20] H. Hofsäss, H. Feldermann, M. Sebstian, and C. Ronning: Phys. Rev. B Vol. 55 (1997), p.13230.

Google Scholar

[21] D. R. McKenzie, W. D. McFall, W. G. Sainty, C. A. Davis, and R. E. Collins: Diamond Relat. Mater. Vol. 2 (1993), p.970.

Google Scholar

[22] H. S. Yang, Y. Zhang, X. B. Zhang, and Y. B, Xu: Appl. Phys. Lett. Vol. 91 (2007), p.061907.

Google Scholar

[23] H. S. Yang, J. Y. Zhang, A. M. Nie, and X. B. Zhang: Chin. Phys. B Vol. 17 (2008), p.3453.

Google Scholar

[24] O. Tsuda, Y. Yamada, T. Fujii, and T. Yoshida: J. Vac. Sci. Twchnol. A Vol. 13 (1995), p.2843.

Google Scholar

[25] S. Matsumoto, and Z. Wenjun: Jpn. J. Appl. Phys., Part 2 Vol. 39(2000), p. L442.

Google Scholar

[26] W. Donner, H. Dosch, S. Ulrich, H. Ehrhardt, and D. Abernathy: Appl. Phys. Lett. Vol. 73 (1998), p.777.

DOI: 10.1063/1.121998

Google Scholar

[27] C. Fitz, A. Kolitsch, and W. Kukarek: Thin Solid Films Vol. 389 (2001), p.173.

Google Scholar

[28] I. Kim, K. Kim, S. Kim, and S. Lee: Thin Solid Films Vol. 290 (1996), p.120.

Google Scholar

[29] C. Ronning, E. Dreher, H. Feldermann, M. Gross, M. Sebastian, and H. Hofsass: Diamond Relat. Mater. Vol. 6 (1997), p.1129.

Google Scholar

[30] M. Murakawa, S. Watanabe, and S. Miyake: Mater. Sci. Eng. A Vol. 140 (1991), p.753.

Google Scholar

[31] H. Kohzuki, Y. Okuna, and M. Motoyama: Diamond Films Technol. Vol. 5 (1995), p.95.

Google Scholar