Growth of Cubic AlN Films on Sapphire(0001) with Atomic Scale Surface Smoothness by Pulsed Laser Deposition

Abstract:

Article Preview

We have previously reported that -AlN crystallites with diameters of 0.5–1 µm were occasionally grown on sapphire(0001) by pulsed laser deposition, which implied that the migration mobility of the species deposited on the substrate surface might be an insufficient for the film growth of -AlN. In the present study, in order to enhance the crystal growth of -AlN, sapphire(0001) substrates with an atomically smoothness (step-sapphire) were employed. The growth conditions of - and -AlN extended to higher nitrogen-pressures, as compared to those using normal surface sapphire(0001) substrates (normal-sapphire). This is due to the enhancement in the mobility of the deposited species on the substrate surface.

Info:

Periodical:

Materials Science Forum (Volumes 638-642)

Main Theme:

Edited by:

T. Chandra, N. Wanderka, W. Reimers , M. Ionescu

Pages:

2921-2926

DOI:

10.4028/www.scientific.net/MSF.638-642.2921

Citation:

T. Yoshitake et al., "Growth of Cubic AlN Films on Sapphire(0001) with Atomic Scale Surface Smoothness by Pulsed Laser Deposition", Materials Science Forum, Vols. 638-642, pp. 2921-2926, 2010

Online since:

January 2010

Export:

Price:

$35.00

[1] Y. Taniyasu, M. Kasu, T. Makimoto: Nature Vol. 441 (2006), p.325.

[2] M. Kneissl, Z. Yang, M. Teepe, C. Knollenberg, O. Schmidt, P. Kiesel, N.M. Johnson, S. Schujman, L.J. Schowalter: J. Appl. Phys. Vol. 101 (2007), 123103.

DOI: 10.1063/1.2747546

[3] W.T. Lin, L.C. Meng, G.J. Chen, H.S. Liu: Appl. Phys. Lett. Vol. 66 (1995), p. (2066).

[4] M. P. Thompson, G. W. Auner, T. S. Zheleva, K. A. Jones, S. J. Simko, J. N. Hilfiker: J. Appl. Phys. Vol. 89 (2001), p.3331.

[5] I. Petrov, E. Mojab, R. C. Powell, J. E. Greene, L. Hultman, J. E. Sundgren: Appl. Phys. Lett. Vol. 60 (1992), p.2491.

[6] Z. M. Ren, Y. F. Lu, H. Q. Ni, T. Y. F. Liew, B. A. Cheong, S. K. Chow, M. L. Ng and J. P. Wang: J. Appl. Phys. Vol. 88 (2000), p.7346.

[7] S. Okubo, N. Shibata, T. Saito and Y. Ikuhara: J. Cryst. Growth Vol. 198/190 (1998), p.452.

[8] T. Yoshitake, T. Nishiyama and K. Nagayama: Jpn. J. Appl. Phys. Vol. 40 (2001), p. L573.

[9] T. Yoshitake, T. Hara, T. Fukugawa, L.Y. Zhu, M. Itakura, N. Kuwano, Y. Yomokiyo and K. Nagayama: Jpn. J. Appl. Phys. Vol. 43 (2004), p. L240.

[10] L. D. Wang and H. S. Kwok: Appl. Surf. Sci. Vol. 154-155 (2000), p.439.

[11] T. Yoshitake, S. Mohri, T. Hara and K. Nagayama: Jpn. J. Appl. Phys. Vol. 47 (2008), p.3600.

[12] J. S. Horwitz and J. A. Sprague: in: Pulsed Laser Deposition of Thin Films, edited by G. Hubler and D. B. Chrisey, chapter, 6, John Wiley & Sons Inc., New York (1994).

[13] J. S. Horwitz and J. A. Sprague: in: Pulsed Laser Deposition of Thin Films, edited by G. Hubler and D. B. Chrisey, chapter, 8, John Wiley & Sons Inc., New York (1994).

[14] W. K. Burton, N. Cabrera and F. C. Frank, Philos. Trans. R. Soc. London A Vol. 243 (1951), p.299.

In order to see related information, you need to Login.