Growth of Cubic AlN Films on Sapphire(0001) with Atomic Scale Surface Smoothness by Pulsed Laser Deposition

Article Preview

Abstract:

We have previously reported that -AlN crystallites with diameters of 0.5–1 µm were occasionally grown on sapphire(0001) by pulsed laser deposition, which implied that the migration mobility of the species deposited on the substrate surface might be an insufficient for the film growth of -AlN. In the present study, in order to enhance the crystal growth of -AlN, sapphire(0001) substrates with an atomically smoothness (step-sapphire) were employed. The growth conditions of - and -AlN extended to higher nitrogen-pressures, as compared to those using normal surface sapphire(0001) substrates (normal-sapphire). This is due to the enhancement in the mobility of the deposited species on the substrate surface.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 638-642)

Pages:

2921-2926

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Taniyasu, M. Kasu, T. Makimoto: Nature Vol. 441 (2006), p.325.

Google Scholar

[2] M. Kneissl, Z. Yang, M. Teepe, C. Knollenberg, O. Schmidt, P. Kiesel, N.M. Johnson, S. Schujman, L.J. Schowalter: J. Appl. Phys. Vol. 101 (2007), 123103.

DOI: 10.1063/1.2747546

Google Scholar

[3] W.T. Lin, L.C. Meng, G.J. Chen, H.S. Liu: Appl. Phys. Lett. Vol. 66 (1995), p. (2066).

Google Scholar

[4] M. P. Thompson, G. W. Auner, T. S. Zheleva, K. A. Jones, S. J. Simko, J. N. Hilfiker: J. Appl. Phys. Vol. 89 (2001), p.3331.

Google Scholar

[5] I. Petrov, E. Mojab, R. C. Powell, J. E. Greene, L. Hultman, J. E. Sundgren: Appl. Phys. Lett. Vol. 60 (1992), p.2491.

DOI: 10.1063/1.106943

Google Scholar

[6] Z. M. Ren, Y. F. Lu, H. Q. Ni, T. Y. F. Liew, B. A. Cheong, S. K. Chow, M. L. Ng and J. P. Wang: J. Appl. Phys. Vol. 88 (2000), p.7346.

Google Scholar

[7] S. Okubo, N. Shibata, T. Saito and Y. Ikuhara: J. Cryst. Growth Vol. 198/190 (1998), p.452.

Google Scholar

[8] T. Yoshitake, T. Nishiyama and K. Nagayama: Jpn. J. Appl. Phys. Vol. 40 (2001), p. L573.

Google Scholar

[9] T. Yoshitake, T. Hara, T. Fukugawa, L.Y. Zhu, M. Itakura, N. Kuwano, Y. Yomokiyo and K. Nagayama: Jpn. J. Appl. Phys. Vol. 43 (2004), p. L240.

DOI: 10.1143/jjap.43.l240

Google Scholar

[10] L. D. Wang and H. S. Kwok: Appl. Surf. Sci. Vol. 154-155 (2000), p.439.

Google Scholar

[11] T. Yoshitake, S. Mohri, T. Hara and K. Nagayama: Jpn. J. Appl. Phys. Vol. 47 (2008), p.3600.

Google Scholar

[12] J. S. Horwitz and J. A. Sprague: in: Pulsed Laser Deposition of Thin Films, edited by G. Hubler and D. B. Chrisey, chapter, 6, John Wiley & Sons Inc., New York (1994).

Google Scholar

[13] J. S. Horwitz and J. A. Sprague: in: Pulsed Laser Deposition of Thin Films, edited by G. Hubler and D. B. Chrisey, chapter, 8, John Wiley & Sons Inc., New York (1994).

Google Scholar

[14] W. K. Burton, N. Cabrera and F. C. Frank, Philos. Trans. R. Soc. London A Vol. 243 (1951), p.299.

Google Scholar