[1]
Liebschener, M., Biomechanical Considerations of Animal Models used in Tissue Engineering of Bone, Biomaterials 25 (2004) 1697-1714.
DOI: 10.1016/s0142-9612(03)00515-5
Google Scholar
[2]
Fung, Y.C., Biomechanics: Mechanical properties of living tissues, 2nd. Edition, Springer (1996).
Google Scholar
[3]
Humphrey, J., Delange, S., An Introduction to Biomechanics, Springer (2003).
Google Scholar
[4]
Fazzalari, N.L., Forwood, M.R., Smith,K., Manthey B.A., Herreen,P., Assesment of Cancellous Bone Quality in Severe Ostheoartrosis: Bome Mineral Density, Mechanics and Microdamage, Bone, Vol22, no. 4 (1998). 381-388.
DOI: 10.1016/s8756-3282(97)00298-6
Google Scholar
[5]
Pounder, N.M., Harrison, A.J., Low intensity pulsed utlrasound for fracture healing: a review of the clinical evidence and the associated biological mechanism of action, Ultrasonics 48 (2008) 330-338.
DOI: 10.1016/j.ultras.2008.02.005
Google Scholar
[6]
Griffith, J.F., Yeung, D.K.W., Antonio, G., Lee, F.K., Hong, A., Wong, S., Lau, E., Leung, P.C., Vertebral Bone Mineral Density, Marrow Perfision and Fat Content in Healthy Men and Men with Osteoporosis: Dynamic Contrastenhanced MR Imaging and MR Sperctroscopy, Radiology 236 (2005).
DOI: 10.1148/radiol.2363041425
Google Scholar
[7]
Pothuaud, L., Van Rietbergen, B., Mosekilde, L., Beuf, O., Levitz, P., Benhamou, C., Majumdar, S., Combination of topological parameters and bone volume fraction better predicts the mechanical properties of trabecular bone, Journal of Biomechanics 35 (2002).
DOI: 10.1016/s0021-9290(02)00060-x
Google Scholar
[8]
Gomberg,B., Saha, P., Wehrli, F., Topology-based orientation analysis of trabecular bone networks, Med. Phys. 30 2 (2003) 158-168.
DOI: 10.1118/1.1527038
Google Scholar
[9]
Wald, M., Vasilic, B., Saha, P., Wehrli, F., Spatial autocorrelation and mean intercepting length analysis of trabecular bone anisotropy applied to in vivo magnetic resonance imaging, Med. Phys. 34 3(2007) 1110-1120.
DOI: 10.1118/1.2437281
Google Scholar
[10]
Hakulinen, M., Day, J., Töyräs, J., Timonen, M., Kröger, H., Weinans, H., Kiviranta, I., Jurvelin,J., Prediction of density and mechanical properties of human bone in vitro by using ultrasound transmission and backscattering measurements at . 2-6. 7 MHz frequency range, Phys. Med. Biol. 50 (2005).
DOI: 10.1088/0031-9155/50/8/001
Google Scholar
[11]
Töyräs, J., Nieminen, M.T., Kröger, H., Jurvelin,J., Bone Mineral Density, Ultrasound Velocity and Broadband Attenuation Predict Mechanical Properties of Trabecular Bone Differently, Bone Vol. 31, No. 4 (2002) 503-507.
DOI: 10.1016/s8756-3282(02)00843-8
Google Scholar
[12]
Chaffaï, S., Peyrin, F., Nuzzo, S., Porcher, R., Berger, G., Laugier, P., Ultrasonic Characterization of Human Cancellous Bone using Transmission and Backscatter Measurements: Relationships to Density and Microstructure, Bone Vol. 30, No. 1 (2002).
DOI: 10.1016/s8756-3282(01)00650-0
Google Scholar
[13]
Haïat, G., Padilla F., Cleveland, R., Laugier, P., Effects of Frequency-Dependent Attenuation and Velocity Dispersion in In Vitro Ultrasound Velocity Measurements in Intact Human Femur Specimens, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol, 53 No. 1 (2006).
DOI: 10.1109/tuffc.2006.1588390
Google Scholar
[14]
Padilla, G., Jenson, F., Bousson, V., Peyrin, F., Laugier, P., Relationships of trabecular bone structure with quantitative ultrasound parameters: in vivo study on human proximal femur using transmission and backscattering measurements, Bone Vol. 42 (2008).
DOI: 10.1016/j.bone.2007.10.024
Google Scholar
[15]
Langton, C., Njeh, C., The Measurement of Broadband Ultrasonic Attenuation in Cancellous Bone - A Review of the Science and Technology, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol, 55 No. 7 (2008) 1546-1554.
DOI: 10.1109/tuffc.2008.831
Google Scholar
[16]
Strelitzki,R., Evans,J., Diffraction and interface losses in broadband ultrasound attenuation measurements in calcaneum, Physiol. Meas. 19 (1998) 197-204.
DOI: 10.1088/0967-3334/19/2/007
Google Scholar
[17]
Chakraborty, A., Prediction of negative dispersion by a nonlocal poroelastic theory, J. Acoust. Soc. 123 1 (2008) 56-67.
Google Scholar
[18]
Cowin, S., He, Q., Tensile and Compressive Yield Criteria for Cancellous Bone, Journal of Biomechanics 38 (2005) 141-144.
DOI: 10.1016/j.jbiomech.2004.03.003
Google Scholar
[19]
Zysset, P., A review of morphology-elasticity relationships in human trabecular bone: theories and experiments, Journal of Biomechanics 36 (2003) 1469-1485.
DOI: 10.1016/s0021-9290(03)00128-3
Google Scholar
[20]
Bruyere-Garnier, K., Dumas, R., Rumelhart, C., Arlot, M., Mechanical characterization in shear of human femoral cancellous bone: torsion and shear tests, Medical Engineering & Physycs 21 (1999) 643-649.
DOI: 10.1016/s1350-4533(99)00096-x
Google Scholar
[21]
Rincon Kohli, L., Zysset, P., Multi-axial mechanical properties of human trabecular bone, Biomechan Model Mechanobiol 7(2008) 27-42.
DOI: 10.1007/s10237-008-0128-z
Google Scholar
[22]
Morgan, E., Yeh, o., Chang, W., Keaveny, T., Nonlinear behavior of trabecular bone at small strains, Journal of Bionechanical Engineering Vol. 123 (2001) 1-9.
DOI: 10.1115/1.1338122
Google Scholar
[23]
Lakes, R., Benedict, R., Noncentrosymmetry in micropolar elasticity, International Journal of Engineering Science 29 (2001) 1161-1167.
DOI: 10.1016/0020-7225(82)90096-9
Google Scholar
[24]
Lakes, R., Elastiic and viscoelastic behavior of chiral materials, International Journal of Engineering Science Vol. 43(2001) 1579-1589.
Google Scholar
[25]
Hellmich, C., Ulm,F., Dormieux, L., Can the diverse properties of trabecular and cortical bone be attributed to only a few tissue-independent phase properties and their interactions? Biomechan Model Mechanobiol 2 (2001) 219-238.
DOI: 10.1007/s10237-004-0040-0
Google Scholar
[26]
Chafaï, S., Roberjot, V., Peyrin, F., Berger, G., Lauger, P., Frequency dependence of ultrasonic backscattering cancellous bone: autocorrelation model and experimental results, J. Acoustic Soc. Am. 108 Vol. 5 (2000) 2403-2411.
DOI: 10.1121/1.1316094
Google Scholar
[27]
Wear, K., The effects of frequency-dependent attenuation and dispersion on sound speed measurements: applications in human trabecular bone, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol, 47 No. 1 (2000) 265-273.
DOI: 10.1109/58.818770
Google Scholar
[28]
Lee, K., Roh, Kim, B., Yoong,S., Acoustic characteristics of cancellous bone: application of Biot's theory and the Modified Biot-Attenborough model, J. of the Korean Physical Society, Vol. 45 No. 2 (2004) 386-392.
Google Scholar
[29]
Hughes, E., Leighton, T., White, P., Investigation on an anisotropic tortuosity in Biot model of ultrasonic propagation in cancellous bonen, J. Acoustic Soc. Am. 121 Vol. 1 (2007) 568-574.
DOI: 10.1121/1.2387132
Google Scholar
[30]
Lee, K., Hughes, E., Leighton, T., Empirical angle-dependent Biot and MBA models for acoustic anisotropy in cancellous bone, Phys. Med. Biol. 52 (2007) 59-73.
DOI: 10.1088/0031-9155/52/1/005
Google Scholar
[31]
Seeman, E., the structural and biomechanical basis of the gain and loss of bone strength in women and men, Endocrinol Metab Clin N Am 32 (2003) 25-38.
Google Scholar
[32]
Duan y., Wang, X., Evans, A., Seeman, E., Structural and biomechanical basis of racial and sex differences in vertebral fragility in Chinese and Caucasians, Bone 36 (2005) 987-998.
DOI: 10.1016/j.bone.2004.11.016
Google Scholar