Study of Alpha-Beta Transformation in Ti-6Al-4V-ELI. Mechanical and Microstructural Characteristics

Article Preview

Abstract:

In the Ti-6Al-4V-ELI alloy, the alpha phase is gradually transformed into the beta phase until beta-transus temperature ( 980°C) is reached, and the transformation is completed. It is important to identify the transformation kinetics to accomplish the solution heat treatments in which a phase alpha percentage remains unchanged. Kinetics and other transformation characteristics are evaluated, as well as their influence on subsequent cooling transformations, by differential and dilatometric thermal analysis, electric conductivity measurements, hardness measurements and metallographic observation, after performing controlled thermal treatments. Starting from the mill annealed condition, samples were heated at temperatures between 650-1000 °C for 1 hour, then water quenched and subsequently heated for aging, air cooled. Finally, the mechanical properties of samples heat treated were obtained.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 638-642)

Pages:

712-717

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Tarín, A. García Simón, N.M. Piris, J.M. Badía and J.M. Antoranz: Bol. Soc. Esp. Ceram. V. 43(2) (2004), pp.267-272.

Google Scholar

[2] P. Tarín et al: Revista de Metalurgia. Madrid. Vol. Extra. (2005), pp.452-456.

Google Scholar

[3] P. Tarín et al: Journal of Aerospace Engineering. Vol. 220, Number 3/2006, (2006), p.241246.

Google Scholar

[4] P. Tarín et al: Materials Science and Engineering, A. Vol. 438-440, (2006), pp.364-368.

Google Scholar

[5] P. Tarín et al: Ti-2007, Science and Technology. Proceedings of "The 11th World Conference on Titanium (JIMIC5), 2007 -Vol. II, pp.1295-98. The Japan Institute of Metals, Japan.

Google Scholar

[6] P. Tarín et al: Materials Science and Engineering, A. Vol. 481-482 (2008), pp.559-561.

Google Scholar

[7] P. Tarín et al: Structural Characterization of the Alpha - Beta and Martensitic Transformations in the Ti-6-22-22-S Alloy". Proceedings of the "International Conference on Martensitic Transformations (ICOMAT 2008),. TMS (The Minerals, Metals & Materials Society) 184 THORN HILL ROAD Warrendale, PA, 15086, USA. In press.

DOI: 10.1002/9781118803592.ch73

Google Scholar

[8] I. Fernández et al: Revisión de las técnicas de preparación metalográfica de aleaciones de titanio,. VII Congreso Nacional de Tratamientos Térmicos y de Superficie. Madrid, october (1998).

DOI: 10.6035/infitec.2020.47

Google Scholar

[9] A.A. Il'in, M. Yu Kollerov Dockl: Physi. Chem. July, 289, (1-3), (1986), pp.616-620.

Google Scholar

[10] J.I. Qazi, O.N. Senkov, J. Rahim, A. Genc, F.H. Froes: Metallurgical and Materials Transactions A. Vol 32A (2001), pp.2453-2463.

Google Scholar

[11] P. Tarín, I. Goñi: Estudio metalográfico y de las transformaciones en titanio y aleaciones mediante técnicas de análisis térmico,. V Asamblea General, CENIM. Madrid, (Octubre, 1981).

Google Scholar

[12] S. Malinov et al: Metall. and Mater. Trans. A., Vol. 32A (2001), pp.879-887.

Google Scholar

[13] S. Bein, J. Bechet: Titanium '95: Science and Technology, Vol. III, The Institute of Materials, London, (1996), pp.2353-2360.

Google Scholar

[14] A. Mekideche, D. Ansel, B. Jounel: Titanium '95: Science and Technology, Vol. III, The Institute of Materials, London, (1996), pp.2587-2594.

Google Scholar

[15] Materials Properties Handbook: Titanium Alloys. (ASM International, 1994) pp.483-635.

Google Scholar

[16] Aerospace Structural Metals Handbook. (Mechanical Properties Data Centre. Code 3707, 2000), pp.1-67.

Google Scholar