Microstructure and Mechanical Properties of Cr-Al-B-N Coatings Prepared by Reactive D.C. and R.F. Co-Sputtering

Article Preview

Abstract:

The current study was undertaken to investigate the synthesis of CrAlN/BN composite coatings having super high hardness by a reactive co-sputtering using CrAl alloy and BN targets and gaseous mixture of Ar+N2, in order to eliminate the possible formation of boride bonding. CrAlN or BN phase was deposited by pulsed d.c.- and r.f.- sputtering, respectively. Plastic hardness, Hpl, and Young’s modulus, E*, of the coatings increased with BN phase ratio, reaching a maximum value of ~46 GPa and 390 GPa at ~8 vol. % of BN phase; and then decreased to ~20GPa and ~300GPa at ~18 vol.%, respectively. Only B1 structured Cr(Al)N phase was found in XRD and SAED analysis. XPS and TEM/HRTEM results revealed that the CrAlN/8vol%BN coating consists mostly of CrAlN and BN phase, which exists as an amorphous like phase among the CrAlN grains. The CrAlN/8vol%BN coating has a kind of nanocomposite structure and the super high hardness over 40 GPa is probably due to this structure.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 638-642)

Pages:

781-786

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Hermann A. Jehn, Surface and Coatings Technology, vol. 131 (2000) 433-440.

Google Scholar

[2] C. Mitterer, P.H. Mayrhofer, M. Beschliesser, P. Losbichler, P. Warbichler, F. Hofer, P.N. Gibson, W. Gissler, H. Hruby, J. Musil, J. Vlček, Surface and Coatings Technology, vol. 120-121 (1999) 405-411.

DOI: 10.1016/s0257-8972(99)00489-2

Google Scholar

[3] P. Karvankova, M.G.J. Veprek-Heijman, D. Azinovic, S. Veprek, Surface and Coatings Technology, vol. 200 (2006) 2978-2989.

DOI: 10.1016/j.surfcoat.2005.01.003

Google Scholar

[4] S. Heck, T. Emmerich, I. Munder, J. Steinebrunner, Surface and Coatings Technology, vol. 86-87 (1996) 467-471.

DOI: 10.1016/s0257-8972(96)02987-8

Google Scholar

[5] D.V. Shtansky, K. Kaneko, Y. Ikuhara, E.A. Levashov, Surface and Coatings Technology, vol. 148 (2001) 206-215.

DOI: 10.1016/s0257-8972(01)01341-x

Google Scholar

[6] M.A. Baker, S. Klose, C. Rebholz, A. Leyland, A. Matthews, Surface and Coatings Technology, vol. 151-152 (2002) 338-343.

DOI: 10.1016/s0257-8972(01)01657-7

Google Scholar

[7] B. Rother, H. Kappl, Surface and Coatings Technology, vol. 73 (1995) 14-17.

Google Scholar

[8] T.Z. Gorishnyy, D, Mihut, S.L. Rohde, S.M. Aouadi, Thin Solid Films, vol. 445 (2003) 96-104.

DOI: 10.1016/s0040-6090(03)01189-1

Google Scholar

[9] Min Zhou, M. Nose, K. Nogi, Surface and Coatings Technology, vol. 183 (2004) 45-50.

Google Scholar

[10] Y. Sakamoto, M. Nose, T. Mae, E. Honbo, M. Zhou, K. Nogi, Surface and Coatings Technology, vol. 174-175 (2003) 444-449.

DOI: 10.1016/s0257-8972(03)00697-2

Google Scholar

[11] É. Hegedűs, I. Kovács, B. Pécz, L. Tóth, K.P. Budna, C. Mitterer, Vacuum, vol. 82 (2008) 209-213.

DOI: 10.1016/j.vacuum.2007.07.023

Google Scholar

[12] Ph. V. Kiryukhantsev-Korneev, J.F. Pierson, M.I. Petrzhik, M. Alnot, E.A. Levashov, D.V. Shtansky, Thin Solid Films, vol. 517 (2009) 2675-2680.

DOI: 10.1016/j.tsf.2008.11.126

Google Scholar

[13] Sara Khamseh, Masateru Nose, Shohei Ueda, Tokimasa Kawabata, Takekazu Nagae, Kenji Matsuda, Susumu Ikeno, Materials Transactions, vol. 49 (2008) 2737-2742.

DOI: 10.2320/matertrans.mer2008249

Google Scholar

[14] J.C. Sánchez-López, D. Martínez-Martínez, C. López-Cates, A. Fernández, Journal of Vacuum Science & Technology A, vol. 23 (4) (2005) 681-686.

Google Scholar

[15] Gwang Seok Kim, Sang Yul Lee, Surface and Coatings Technology, vol. 201 (2006) 4361-4366.

Google Scholar

[16] J. Musil, in: �anostructured Coatings, edited by Albano Cavaleiro and Jeff Th. M. De Hosson, Series: Nanostructure Science and Technology, Series edited by David J. Lockwood, Springer, New York, NY (2006), 407-463.

Google Scholar