Microstructure and Mechanical Properties of Cr-Al-B-N Coatings Prepared by Reactive D.C. and R.F. Co-Sputtering

Abstract:

Article Preview

The current study was undertaken to investigate the synthesis of CrAlN/BN composite coatings having super high hardness by a reactive co-sputtering using CrAl alloy and BN targets and gaseous mixture of Ar+N2, in order to eliminate the possible formation of boride bonding. CrAlN or BN phase was deposited by pulsed d.c.- and r.f.- sputtering, respectively. Plastic hardness, Hpl, and Young’s modulus, E*, of the coatings increased with BN phase ratio, reaching a maximum value of ~46 GPa and 390 GPa at ~8 vol. % of BN phase; and then decreased to ~20GPa and ~300GPa at ~18 vol.%, respectively. Only B1 structured Cr(Al)N phase was found in XRD and SAED analysis. XPS and TEM/HRTEM results revealed that the CrAlN/8vol%BN coating consists mostly of CrAlN and BN phase, which exists as an amorphous like phase among the CrAlN grains. The CrAlN/8vol%BN coating has a kind of nanocomposite structure and the super high hardness over 40 GPa is probably due to this structure.

Info:

Periodical:

Materials Science Forum (Volumes 638-642)

Main Theme:

Edited by:

T. Chandra, N. Wanderka, W. Reimers , M. Ionescu

Pages:

781-786

DOI:

10.4028/www.scientific.net/MSF.638-642.781

Citation:

M. Nose et al., "Microstructure and Mechanical Properties of Cr-Al-B-N Coatings Prepared by Reactive D.C. and R.F. Co-Sputtering", Materials Science Forum, Vols. 638-642, pp. 781-786, 2010

Online since:

January 2010

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.