Study of Deposition of Aluminum Nitride Thin Films by Hollow Cathode Electron Beam Vapor Deposition Method

Article Preview

Abstract:

Aluminum nitride (AlN) thin films were deposited on (100) oriented silicon wafers substrates by Hollow Cathode Electron Beam Vapor Deposition system (HCEBVD) under various Ar/N2 mass flow ratio. The films were characterized by Atomic Force Microscopy (AFM), Glancing Incident X-ray Diffraction (GIXRD) techniques and Ultraviolet/Visible Spectrophotometer (UV/VIS). It was found that the thin films are polycrystalline and have a hexagonal wurtzite structure with (002) preferred orientation, as revealed by GIXRD. AFM analysis indicates that the surface of the thin films is smooth, with average RMS (Root Mean Square) roughness Ra of 0.7nm, which is suitable for application in surface acoustic wave devices. The film thickness and optical refractory properties of the AlN thin films were investigated.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 654-656)

Pages:

1708-1711

Citation:

Online since:

June 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Strite, H. Morkoc: J. Vac. Sci. Technol. Vol. B10 (1992): p.1237.

Google Scholar

[2] M. B. Assouar, O. Elmazria, L. Le Brizoual, et al: Diamond and Related Materials Vol. 11 (2002): p.413.

Google Scholar

[3] R. Bathe, R.D. Vispute, D. Habersat, et al: Thin Solid Films, Vol. 398-399 (2001): p.575.

Google Scholar

[4] Q.X. Guo, M. Yoshitugu, T. Tanaka, et al: Thin Solid Films Vol. 483 (2005): p.16.

Google Scholar

[5] A. Khannaa and D.G. Bhat: J. Vac. Sci. Technol. Vol. A25 (2007) : p.557.

Google Scholar

[6] J.P. Kar, G. Bose, S. Tuli: Current Applied Physics Vol. 6 (2006): p.873.

Google Scholar

[7] E. Mounier, Y. Pauleau: J. Vac. Sci. Technol. Vol. A14 (1996): p.2535.

Google Scholar

[8] Y.Z. You, D. Kim: Thin Solid Films Vol. 515 (2007): p.2860.

Google Scholar

[9] K. Kusaka, D. Taniguchi, T. Hanabusa, et al: Vacuum Vol. 59 (2000): p.806.

Google Scholar

[10] I.C. Oliveiraa, K.G. Grigorovb, H.S. Maciela, et al: Vacuum Vol. 75 (2004): p.331.

Google Scholar

[11] M.A. Auger, L. Vazquez, M. Jergel, et al: Surf. and Coat. Tech. Vol. 180 -181 (2004): p.140.

Google Scholar

[12] V. Brien, P. Pigeat: Journal of Crystal Growth Vol. 299 (2007): p.189.

Google Scholar

[13] I. Petrov, P. B. Barna, L. Hultman: J. Vac. Sci. Technol. Vol. A21 (2003), p. S117.

Google Scholar

[14] R.S. Pessoa, G. Murakami, G. Petraconi, et al: Brazilian Journal of Physics Vol. 36 (2006), p.332.

Google Scholar

[15] Y. Kajikawa, S. Noda and H. Komiyama: J. Vac. Sci. Technol. Vol. A21 (2003), p. (1943).

Google Scholar