Effect of Temperature and Strain Rate on Microstructure of Dynamically Recrystallized Ni45Co5 Mn36.7In13.3 Alloy

Article Preview

Abstract:

In recent years, there has been an increasing interest in magnetic shape memory alloys (MSMAs) due to their unique ability to produce very large output strains and rapid response frequency. NiMnCoIn is a new-type MSMAs in which a reversible magnetic-field-induced phase transformation is observed. The microstructural evolution in the process of dynamic recrystallization in polycrystalline Ni45Co5Mn36.7In13.3 was studied in the present paper. The experimental results showed that the high deformation temperature and slow strain rate were necessary to achieve perfect dynamic-recrystallizing microstructure in Ni45Co5Mn36.7In13.3 alloy. Precipitates with two sizes were observed. The content of Co in precipitates was higher than that in the matrix alloy, while the content of In was lower than that in the matrix alloy.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 654-656)

Pages:

2188-2191

Citation:

Online since:

June 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. E. Karaca, I. Karaman, B. Basaran, Y. I. Chumlyakov and H. J. Maier: Acta Mater. Vol. 54 (2006), p.233.

Google Scholar

[2] A. Sozinov, A. A. Likhachev,N. Lanska and K. Ullakko: Appl. Phys. Lett. Vol. 80 (2002), p.1746.

Google Scholar

[3] K. Ullakko, J. K. Huang, C. Kantner, R. C. O'Handley and V. V. Kokorin: Appl. Phys. Lett. Vol. 69 (1996), p. (1966).

Google Scholar

[4] H. E. Karaca, I. Karaman, B. Basaran, D. C. Lagoudas, Y. Chumlyakov and H. J. Maier: Acta Mater. Vol. 55 (2007), p.4253.

DOI: 10.1016/j.actamat.2007.03.025

Google Scholar

[5] R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Kitakami, K. Oikawa, A. Fujita, T. Kanomata and K. Ishida: Nature Vol. 439 (2006), p.957.

DOI: 10.1038/nature04493

Google Scholar

[6] T. Krenke, M. Acet, E.F. Wassermann, X. Moya, L. Manosa and A. Planes: Phys Rev B Vol. 72 (2005), p.014412.

Google Scholar

[7] Y. Feng, J.H. Sui, Z.Y. Gao, G.F. Dong and W. Cai: J. Alloys & Comp. Vol. 476 (2009), p.935.

Google Scholar

[8] Z.D. Han, D.H. Wang, C.L. Zhang, S.L. Tang, B.X. Gu and Y.W. Du: Appl. Phys. Lett. Vol. 89 (2006), p.182507.

Google Scholar

[9] T. Krenke, E. Duman, M. Acet and E.F. Wassermann: Phys. Rev. B Vol. 75 (2007), p.104414.

Google Scholar

[10] P.A. Bhobe, K.R. Priolkar and A.K. Nigam: Appl. Phys. Lett. Vol. 91 (2007), p.242503.

Google Scholar

[11] Y. D. Wang, E. W. Huang, Y. Ren, Z. H. Nie, G. Wang, Y. D. Liu, J. N. Deng, H. Choo, P. K. Liaw, D. E. Brown and L. Zuo: Acta Mater. Vol. 56 (2008), p.913.

Google Scholar

[12] H E. Karaca, I. Karaman, B. Basaran, Y. Ren, Y. I. Chumlyakov, and H. J. Maier: Adv. Funct. Mater. Vol. 19 (2009), p.983.

Google Scholar

[13] I. Karaman, H. E. Karaca, B. Basaran, D. C. Lagoudas, Y. I. Chumlyakov and H. J. Maier: Scripta Mater. Vol. 55 (2006), p.403.

DOI: 10.1016/j.scriptamat.2006.03.061

Google Scholar

[14] R. C. O'Handley: Modern Magnetic Materials: Principles and Applications (John Wiley & Sons, USA 2000).

Google Scholar

[15] U. Gaitzsch, S. Roth, B. Rellinghaus and L. Schultz: J. Magn. Magn. Mater. Vol. 305 (2006), p.275.

Google Scholar

[16] U. Gaitzsch, M. Pötschke, S. Roth, B. Rellinghaus and L. Schultz: Scr. Mater. Vol. 57 (2007), p.493.

Google Scholar

[17] M. Pötschke, , U. Gaitzsch, , S. Roth, B. Rellinghaus and L. Schultz, J. Magn. Magn. Mater. Vol. 316 (2007), p.383.

Google Scholar