The Matrix Method for Data Evaluation and its Advantages in Comparison to the Sin2ψ and Similar Methods

Article Preview

Abstract:

This article gives an overview of different methods for data treatment in x-ray stress measurement, and how these methods should be replaced with the matrix method, which in general is more versatile, more accurate and, in most cases, also easier to handle. It also shows how much the accuracy could be improved by replacing the traditional methods with the matrix method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

7-12

Citation:

Online since:

March 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Dölle, V. Hauk, Z. f. Metallkde., 69 (1978) 410–417.

Google Scholar

[2] H. Dölle, V. Hauk, Z. f. Metallkde., 69 (1978) 682–685.

Google Scholar

[3] H. Dölle: J. Appl. Cryst. 12 (1979) 489–501.

Google Scholar

[4] B. Ortner: J. Appl. Cryst., 39 (2006) 401–409.

Google Scholar

[5] J. Lu. Ed., Handbook of Measurement of Residual Stresses, The Fairmont Press, Lilburn, (1996).

Google Scholar

[6] B. Ortner, Advances in X-ray Analysis, 50 (2007) 117.

Google Scholar

[7] B. Ortner, Powder Diffraction, 22 (2007) 102.

Google Scholar

[8] B. Ortner, T. Antretter, M. Hofmann, E. Werner, in A.R. Pyzalla, A. Borbély, H. P. Degischer Eds., Mat. Sci. Forum, Vol. 571–572 (2008) 225–229, Trans. Tech. Publ. (2008).

DOI: 10.4028/www.scientific.net/msf.571-572.225

Google Scholar

[9] F. Barral et al., Met Trans. A 18 (1987) 1229.

Google Scholar

[10] J. M. Sprauel et al., Proc ICRS2 (1989) 172.

Google Scholar

[11] P. Van Houtte, L. De Buyser, Acta metall. Mat. 41 (1993) 323.

Google Scholar

[12] B. Ortner, Advances in X-ray Analysis, 29 (1986) 387.

Google Scholar

[13] R.A. Winholtz, J.B. Cohen, Aust. J. Phys. 41 (1988) 189.

Google Scholar

[14] B. Ortner, Int. J. Mat. Res., 99 (2008) 233.

Google Scholar

[15] B. Ortner, Advances in X-ray Analysis, 52 (2009) 763.

Google Scholar

[16] B. Ortner, Powder Diffraction, 24-2-sup (2009) S16.

Google Scholar

[17] H. Peiter, Handbuch der Spannungsmesspraxis, Vieweg, Braunschweig, Wiesbaden, (1992).

Google Scholar

[18] V. Hauk, G. Vaessen, Z. f. Metallkde, 76 (1985) 102.

Google Scholar

[19] V. Hauk: Structural and residual stress analysis by nondestructive methods, Elsevier, Amsterdam (1997).

Google Scholar

[20] A. C. Vermeulen, Mat. Sci. Forum, 404–407 (2002) 35–42.

Google Scholar

[21] U. Welzel et al., J. Appl. Cryst. 38 (2005) 1–29.

Google Scholar

[22] C. Quaeyhaegens, G. Knuyt, L. M. Stals, J. Surf. Coat. Technol. 74–75 (1995) 104–109.

Google Scholar

[23] C. Quaeyhaegens, G. Knuyt, L. M. Stals, J. Vac. Sci. Technol. A 14 (1996) 2462–2468.

Google Scholar

[24] I.C. Noyan, J.B. Cohen: Residual Stress, Springer New York, Berlin, Heidelberg, London, Paris, Tokyo, (1987).

Google Scholar

[25] S. Taira, K. Tanaka, T. Yamazaki, J. Soc Mat. Sci. Japan, 27–294 (1978) 251.

Google Scholar

[26] B. Ortner, Advances in X-ray Analysis, 29 (1986) 113.

Google Scholar