Excellent Surface Passivation by Silicon Dioxide Grown with a Electrochemical Method

Article Preview

Abstract:

A novel method to grow silicon dioxide layers for passivating the silicon surface is given more attention. SiO2 was grown by applying a positive voltage across silicon wafers in a nitric acid solution at low temperature. After annealing in N2 media at 900°C for 20min, excellent surface passivation was achieved. The maximum effective lifetime of the silicon arrived at 29.8μs and 29.75μs, which was three times the value of silicon without passivation. The effective lifetime of other types of silicon could be ten times the initial value without the silicon dioxide. A comparison study of the effect of the FGA, annealing at low temperature and annealing in N2 or O2 containing medium at high temperature were investigated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

48-54

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.G. Aberle: Crystalline Silicon Solar Cells—Advanced Surface Passivation and Analysis (Sydney: UNSW, 1999).

Google Scholar

[2] A.G. Aberle, S.W. Glunz, A.W. Stephens, and M.A. Green: Progr. Photovolt. Vol. 2(1994), pp.265-273.

Google Scholar

[3] Asuha, T. Kobayashi, M. Takahashi, H. Iwasa, H. Kobayashi: Surface Science Vol. 547(2003), p.275–283.

DOI: 10.1016/j.susc.2003.09.016

Google Scholar

[4] N.E. Grant and K.R. McIntosh, 24th European Photovoltaic Solar Energy Conference, 21-25 September 2009, Hamburg, Germany.

Google Scholar

[5] W. Kern: J. Electrochem. Soc. Vol. 137(1990), p.1887.

Google Scholar

[6] S.W. Kang, S.W. Rhee and S.M. George: J. Vac. Sci. Technol. A Vol. 22, No. 6(2004).

Google Scholar

[7] C. Moore, T.S. Perova, B. Kennedy, K. Berwick, I.I. Shaganov, and R.A. Moore: Proc. of SPIE Vol. 4876(2003).

Google Scholar

[8] R.A.B. Devine, J.P. Duraud, E. Dooryhée: John Wiley & Sons Inc(2003).

Google Scholar

[9] K.T. Queeney, N. Herbots, J. M. Shaw, and V. Atlurib andY. J. Chabal: Appl. Phys. Lett. Vol. 84, No. 4(2004).

Google Scholar

[10] K. Ishikawa, H. Ogawa, S. Fujimura: J. Appl. Phys. Vol. 85 (1999).

Google Scholar

[11] H. Keppler, N.S. Bagdassarov: American mineralogist Vol. 78(1993), p.1324.

Google Scholar

[12] DW. Berreman: Phys Rev Vol. 130(1963), p.2193.

Google Scholar

[13] L. Schumann, A. Lehmann ,H. Sobotta, W. Riede ,U. Teschner, K. Hubner: Phys Status Solidi B Vol. 110(1982), p. K69-71.

DOI: 10.1002/pssb.2221100157

Google Scholar

[14] A. Lehmann, L. Schumann, K. Hubner: Phys. Status Solidi B Vol. 121(1984), p.505.

Google Scholar

[15] A.L. Shabalov , M.S. Feldman : Thin Solid Films Vol. 151(1987), p.317–323.

Google Scholar

[16] A.V. Rao, R.R. Kalesh, G.M. Pajonk: J. Mater. Sci. 38(2003), p.4407.

Google Scholar

[17] G. D. Chukin and V. I. Malevich: UDC 535. 33: 541. 183(1977).

Google Scholar

[18] D. Nesheva, I. Bineva, Z. Levi, Z. Aneva, Ts. Merdzhanova, J.C. Pivin: Vacuum 68, 1-9(2003).

DOI: 10.1016/s0042-207x(02)00266-x

Google Scholar

[19] D.V. Tsu , G. Lucovsky , B.N. Davidson: Phys Rev B Vol. 40(1989), p.1795–1805.

Google Scholar

[20] G. Hollinger, F.J. Himpsel: Appl. Phys. Lett. Vol. 44 (1984), p.93.

Google Scholar

[21] F.J. Himpsel, F.R. McFeely, A. Taleb-Ibrahimi, J.A. Yarmoff, G. Hollinger: Phys. Rev. B Vol. 38 (1988), p.6084.

Google Scholar

[22] W. Fuessel, M. Schmidt, H. Angermann, G. Mende et al.: Nucl. Instr. and Meth. in Phys. Res. A Vol. 377(1996), pp.177-83.

Google Scholar

[23] C. Leguijt, P. Lölgen J.A. Eikelboom A.W. Weeber etal.: Sol. Ener. Mater. Sol. Cells Vol. 40(1996), pp.297-345.

Google Scholar

[24] J. Albohn, W. Fussel, N. D. Sinh, K. Kliefoth et al.,:J. Appl. Phys. Vol. 88(2000), pp.842-849.

Google Scholar

[25] M. L. Reed and J. D. Plummer,: J. Appl. Phys. Vol. 63(1988), pp.5776-579.

Google Scholar

[26] W.A. Pliskin, J. Vac. Sci. Technol. Vol. 14 (1977), p.1064.

Google Scholar