[1]
B. H. Houston and M. Zalalutdinov, Toward the creation of the world's smallest radio, NRL Review acoustics (2005).
Google Scholar
[2]
C. Lam, A review of the recent development of MEMS and crystal oscillators and their impact on the frequency control product industry, Int. Ultrasonic Symp. 2008 IEEE (2008) 694-704.
Google Scholar
[3]
A. Partridge, J. McDonald, MEMS resonators look to displace quartz oscillators, MEMS Manufacturing (2006) 11-14.
Google Scholar
[4]
P. Sarro, Silicon carbide as a new MEMS technology, Sens. and Act. A: Phys. 82 (2000) 210-218.
Google Scholar
[5]
V. Cimalla, J. Pezoldt, O. Ambacher, Group III nitride and SiC based MEMS and NEMS: materials properties, technology and applications, J. of Phys. D: Appl. Phys. 40 (2007) 6386-6434.
DOI: 10.1088/0022-3727/40/20/s19
Google Scholar
[6]
J. M. Melzak, Silicon carbide for RF MEMS, Microwave Symp. Dig. IEEE MTT-S International 3, (2003) 1629-1632.
DOI: 10.1109/mwsym.2003.1210450
Google Scholar
[7]
R. Cheung, Silicon Carbide Micro Electromechanical Systems for Harsh Environments, Imperial College Press, London, 2006.
Google Scholar
[8]
R. J. Wilfinger, P. H. Bardell, D. S. Chhabra, The resonistor: a frequency selective device utilizing the mechanical resonance of a silicon substrate, IBM J. of Res. and Dev. 12 (1968) 113.
DOI: 10.1147/rd.121.0113
Google Scholar
[9]
L. Jiang, R. Cheung, J. Hedley, M. Hassan, A.J. Harris, J.S. Burdess, M. Mehregany and C.A. Zorman, SiC cantilever resonators with electrothermal actuation, Sens. Actuators A 128 (2006) 376-386.
DOI: 10.1016/j.sna.2006.01.045
Google Scholar
[10]
E. Mastropaolo, I. Gual, R. Cheung, Silicon carbide electrothermal mixer-filters, Elec. Lett. 46 (2010) 62-63.
DOI: 10.1049/el.2010.3051
Google Scholar
[11]
R.A. Johnson, Mechanical filters in electronics, Wiley, New York, 1983.
Google Scholar
[12]
C. Leondes, ed., MEMS/NEMS Handbook - Sensors and Actuators, vol. 4, Springer, New York, 2006.
Google Scholar
[13]
Information on http://www.novasic.com/
Google Scholar
[14]
N. O. V. Plank, M. A. Blauw, E. W. J. M. van der Drift, R. Cheung, The etching of silicon carbide in inductively coupled SF6/O2 plasma, J. of Phy. D: App. Phys. 36 (2003) 482.
DOI: 10.1088/0022-3727/36/5/310
Google Scholar
[15]
A. O'Hara, G. Pringle, L. Slater, M. Leavy, T. McKie, B. Dickson, M. Stone, MEMSTAR Technology, (2005) Semicon.
Google Scholar
[16]
E. Mastropaolo, R. Cheung, A. Henry and E. Janzen, Electrothermal actuation studies of silicon carbide ring resonators, J. Vac. Sci. Technol. B 27 (2009) 3109-3114.
DOI: 10.1116/1.3244622
Google Scholar
[17]
K. Babaei Gavan, H.J.R. Westra, E.W.J.M Van der Drift, W.J. Venstra and H.S.J. Van der Zant, Impact of fabrication technology on flexural resonances of silicon nitride cantilevers, Microelec.. Eng. 86 (2009) 1216-1218.
DOI: 10.1016/j.mee.2009.03.113
Google Scholar
[18]
M. Pozzi, M. Hassan, A. J. Harris, J. S. Burdess, L. Jiang, K. K. Lee, R. Cheung, G. Phelps, N. G. Wright, C. A. Zorman, M. Mehregany, Mechanical properties of a 3C-SiC film between room temperature and 600 °C, J. Phys. D, Appl. Phys. 40 (2007) 3335-3342.
DOI: 10.1088/0022-3727/40/11/012
Google Scholar
[19]
V.L. Doughtie, A. Vallance and L.F. Kreisle, Design of Machine Members, McGraw-Hill, 1964.
Google Scholar
[20]
S. Roy, R. G. DeAnna, C. A. Zorman, M. Mehregany, Fabrication and characterization of polycrystalline SiC resonators, IEEE Trans. Electron. Dev. 49 (2002) 2323.
DOI: 10.1109/ted.2002.807445
Google Scholar
[21]
Tables of Physical & Chemical Constants, Kaye & Laby Online Version 1.0, 2005, (16th ed. 1995).
Google Scholar
[22]
G.S. Wood, I. Gual, P. Parmiter and R. Cheung, Temperature stability of electro-thermally and piezoelectrically actuated silicon carbide MEMS resonators, Microelec. Rel. 50 (2010) 1977-1983.
DOI: 10.1016/j.microrel.2010.05.011
Google Scholar