Local Solid Phase Epitaxy of Few-Layer Graphene on Silicon Carbide

Article Preview

Abstract:

Patterned Few Layers Graphene (FLG) films were grown by local solid phase epitaxy from nickel silicide supersaturated with carbon. The process was realised by annealing of thin Ni films deposited on the carbon-terminated surface of 6H-SiC semi-insulating wafer followed by wet processing to remove the resulting nickel silicide. Raman spectroscopy was used to investigate both the formation and subsequent removal of nickel silicide during processing. Characterisation of the resulting FLG films was carried out by Raman spectroscopy and Atomic Force Microscopy (AFM). The thickness of the final FLG film estimated from the Raman spectra varied from 1 to 3 monolayers for initial Ni layers varying from 3 to 20 nm thick. AFM observations revealed process-induced surface roughening in FLG films, however, electrical conductivity measurements by Transmission Line Model (TLM) structures confirmed that roughness does not compromise the film sheet resistance.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 717-720)

Pages:

629-632

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. K. Geim, Science 324 (2009) 1530-1534.

Google Scholar

[2] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Science 306 (2004) 666-669.

DOI: 10.1126/science.1102896

Google Scholar

[3] C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First and W. A. de Heer, J. Phys. Chem. B 108 (2004) 19912-19916.

DOI: 10.1021/jp040650f

Google Scholar

[4] K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Rohrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber and T. Seyller, Nat. Mater. 8 (2009) 203-207.

DOI: 10.1038/nmat2382

Google Scholar

[5] A. Hähnel, V. Ischenko and J. Woltersdorf, Mat. Chem. and Phys. 110 (2-3), (2008), 303-310.

Google Scholar

[6] K. Vassilevski, I. P. Nikitina, A. B. Horsfall, N. G. Wright and C. M. Johnson, Mat. Science Forum 645-648 (2010) 589-592.

DOI: 10.4028/www.scientific.net/msf.645-648.589

Google Scholar

[7] Information on http://www.tankeblue.com.

Google Scholar

[8] Information on http://www.novasic.com.

Google Scholar

[9] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth and A. K. Geim, Phys. Rev. Lett. 97 (2006) 187401.

DOI: 10.1103/physrevlett.97.187401

Google Scholar

[10] H. Wang, Y. Wang, X. Cao, M. Feng and G. Lan, J. Raman Spec. 40 (2009) 1791-1796.

Google Scholar

[11] D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold and L. Wirtz, Nano Lett. 7 (2007) 238-242.

DOI: 10.1021/nl061702a

Google Scholar