Lock-In Thermography and Related Topics in Photovoltaic Research

Article Preview

Abstract:

In this contribution the basic principles of DLIT (dark lock-in thermography) are introduced and typical application examples are shown. These results are compared with that of other solar cell characterization techniques like electroluminescence (EL) and photoluminescence (PL) imaging, which are also very popular in Germany. It will be shown that these techniques are largely complementary to each other. Luminescence techniques are most sensitive for the detection of local recombination centers in the bulk and of series resistance problems of the cells, whereas DLIT is most effective for investigating all problems being connected with the dark current of the cells. A new DLIT technique is introduced which allows a separate imaging of the so-called diffusion current and the recombination current. These two contributions of the dark current are based on different physical mechanisms (recombination in the bulk and in the depletion region, respectively), and their spatial distributions differ significantly. Such investigations are impossible by applying luminescence-based imaging techniques.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

115-122

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Martin, C. Fernandez-Alonso, J.A. Poce-Fatou, R. Alcantara, A versatile computer-controlled high-resolution LBIC system, Prog. Photovolt: Res. Appl. 12 (2004) 283-295

DOI: 10.1002/pip.528

Google Scholar

[2] O. Breitenstein, W. Warta, M. Langenkamp, Lock-in Thermography - Basics and Use for Evaluating Electronic Devices and Materials, second ed., Springer, Berlin/Heidelberg, (2010)

DOI: 10.1007/978-3-642-02417-7

Google Scholar

[3] Information on www.thermosensorik.com

Google Scholar

[4] Information on http://dcgsystems.com

Google Scholar

[5] Information on www.infratec.de

Google Scholar

[6] Information on www.automationtechnology.de

Google Scholar

[7] T. Trupke, R.A. Bardos, M.C. Schubert, W. Warta, Photoluminescence imaging of silicon wafers, Appl. Phys. Lett. 89 (2006) 044107

DOI: 10.1063/1.2234747

Google Scholar

[8] T. Fuyuki, H. Kondo, T. Yamazaki, Y. Takahashi, Y. Uraoka, Photographic surveying of minority carrier diffusion length in polycrystalline silicon solar cells by electroluminescence, Appl. Phys. Lett. 86 (2005) 262108

DOI: 10.1063/1.1978979

Google Scholar

[9] O. Breitenstein, J. Bauer, K. Bothe, D. Hinken, J. Müller, W. Kwapil, M.C. Schubert, W. Warta, Can luminescence imaging replace lock-in thermography on solar cells?, contribution at 37th IEEE PVSC, Seattle 2011, to be published in IEEE J-PV

DOI: 10.1109/pvsc.2011.6185846

Google Scholar

[10] A. Simo, S. Martinuzzi, Hot spots and heavily dislocated regions in multicrystalline silicon cells, 21st IEEE Photovoltaic Specialists Conference, Kissimee 1990, pp.800-805

DOI: 10.1109/pvsc.1990.111730

Google Scholar

[11] J. Wohlgemuth, W. Herrmann, Hot spot tests for crystalline silicon modules, 31st IEEE Photovoltaic Specialists Conference, Orlando 2005, pp.1062-1063

DOI: 10.1109/pvsc.2005.1488317

Google Scholar

[12] P.K. Kuo, T. Ahmed, H. Jin, R.L. Thomas, Phase-locked image acquisition in thermography, SPIE 1004 (1988) 41-45

Google Scholar

[13] X.P.V. Maldague, Theory and practice of infrared technology for nondestructive testing, Wiley, New York, 2001.

Google Scholar

[14] O. Breitenstein, J.P. Rakotoniaina, M.H. Al Rifai, Quantitative Evaluation of Shunts in Solar Cells by Lock-in Thermography, Prog. Photovolt: Res. Appl. 11 (2003) 515-526

DOI: 10.1002/pip.520

Google Scholar

[15] K. Ramspeck, K. Bothe, D. Hinken, B. Fischer, J. Schmidt, R. Brendel, Recombination current and series resistance imaging of solar cells by combined luminescence and lock-in thermography, Appl. Phys. Lett 90 (2007) 153502

DOI: 10.1063/1.2721138

Google Scholar

[16] O. Breitenstein, Nondestructive local analysis of current-voltage characteristics of solar cells by lock-in thermography, Solar Energy Mat. & Solar Cells 95 (2011) 2933-2936

DOI: 10.1016/j.solmat.2011.05.049

Google Scholar

[17] S. Ostapenko, I. Tarasov, J.O. Kalejs, C. Haessler, E-U. Reisner, Defect monitoring using scanning photoluminescence spectroscopy in multicrystalline silicon wafers, Semicond. Sci. Technol. 15 (2000) 840-848.

DOI: 10.1088/0268-1242/15/8/310

Google Scholar

[18] T. Trupke, R.A. Bardos, M.C. Schubert, W. Warta, Photoluminescence imaging of silicon wafers, Appl. Phys. Lett. 89 (2006) 044107

DOI: 10.1063/1.2234747

Google Scholar

[19] T. Fuyuki, H. Kondo, T. Yamazaki, Y. Takahashi, Y. Uraoka, Photographic surveying of minority carrier diffusion length in polycrystalline silicon solar cells by electroluminescence, Appl. Phys. Lett. 86 (2005) 262108

DOI: 10.1063/1.1978979

Google Scholar

[20] T. Trupke, E. Pink, R. A. Bardos, M. D. Abbott, Spatially resolved series resistance of silicon solar cells obtained from luminescence imaging, Appl. Phys. Lett. 90 (2007) 093506

DOI: 10.1063/1.2709630

Google Scholar

[21] M. Glatthaar, J. Haunschild, M. Kasemann, J. Giesecke, W. Warta, Spatially resolved determination of dark saturation current and series resistance of silicon solar cells, Phys. Stat. Sol. RRL 4 (2010) 13-15

DOI: 10.1002/pssr.200903290

Google Scholar

[22] J. Haunschild, M. Glatthaar, M. Kasemann, S. Rein, E.R. Weber, Fast series resistance imaging for silicon solar cells using electroluminescence, Phys. Stat. Sol. RRL 3 (2009) 227-229

DOI: 10.1002/pssr.200903175

Google Scholar

[23] O. Breitenstein, A. Khanna, Y. Augarten, J. Bauer, J.-M. Wagner, K. Iwig, Quantitative evaluation of electroluminescence images of solar cells, Phys. Stat. Sol. RRL 4 (2010) 7-9

DOI: 10.1002/pssr.200903304

Google Scholar

[24] S. Herlufsen, J. Schmidt, D. Hinken, K. Bothe, R. Brendel, Photoconductance-calibrated photoluminescence lifetime imaging of crystalline silicon, Phys. Stat. Sol. (RRL) 2 (2008) 245-247

DOI: 10.1002/pssr.200802192

Google Scholar

[25] S. Herlufsen, K. Ramspeck, D. Hinken, A. Schmidt, J. Müller, K. Bothe, J. Schmidt, R. Brendel, Dynamic photoluminescence lifetime imaging for the characterization of silicon wafers, Phys. Stat. Sol. (RRL) 5 (2011) 25–27

DOI: 10.1002/pssr.201004426

Google Scholar

[26] S. Steingrube, O. Breitenstein, K. Ramspeck, S. Glunz, A. Schenk, P.P. Altermatt, Explanation of commonly observed shunt currents in c-Si solar cells by means of recombination statistics beyond the Shockley-Read-Hall approximation, J. Appl. Phys. 110 (2011) 014515

DOI: 10.1063/1.3607310

Google Scholar

[27] O. Breitenstein, J. Bauer, T. Trupke, R.A. Bardos, On the detection of shunts in silicon solar cells by photo- and electroluminescence imaging, Prog. Photovolt: Res. Appl. 16 (2008) 325-330

DOI: 10.1002/pip.803

Google Scholar

[28] K. Ramspeck, K. Bothe, D. Hinken, B. Fischer, J. Schmidt, R. Brendel, Recombination current and series resistance imaging of solar cells by combined luminescence and lock-in thermography, Appl. Phys. Lett. 90 (2007) 153502

DOI: 10.1063/1.2721138

Google Scholar