EBIC Study on Metal Contamination at Intra Grain Defects in Multicrystalline Silicon for Solar Cells

Article Preview

Abstract:

Interactions between intra-grain defects and metal impurities in multicrystalline silicon (mc-Si) were evaluated. After metal contaminations, EBIC contrasts at > 1.5o SA-GBs were more enhanced than those at Ni/1000 oC > Ni/600 oC. These results might attribute to Fe atoms form deeper energy levels of recombination centers than Ni atoms and the gettering abilities at SA-GBs depend on the misorientation angles. Many dark spots were observed in EBIC images in the Ni/600 oC. Since the dark spots corresponded to the etch pits, the dark spots might be dislocations decorated with Ni. The gettering abilities of SA-GBs depended on the misorientaion angles, and the recombination properties at SA-GBs and dark spots, such as small defects after metal contamination were different by annealing temperatures and the types of metal impurities.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

129-132

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Coletti, P. C. P. Brounsveld, G. Hahn, W. Warta, D. Macdonald, B. Ceccaroli, K. Wambach, N. L. Quang, and J. M. Fernandez, Adv. Funct. Mater, 21, 879, (2011).

DOI: 10.1002/adfm.201000849

Google Scholar

[2] B. Sopori, "Impurities and Defects in Photovoltics Si Devices", 10th international Work shop on the physics of semiconductor devices, (1999).

Google Scholar

[3] A. A. Istratov, T. Buonassisi, M. D. Pickett, M. Heuer, and E. R. Weber, Mater. Sci. Eng. B, 134, 282 (2006).

Google Scholar

[4] J. Lu, M. Wagener, and G. Rozgonyi, J. Appl. Phys., 94, 140 (2003).

Google Scholar

[5] M. Kittler, C. Ulhaqbouillet, and V. Higgs, J. Appl. Phys., 78, 4573 (1995).

Google Scholar

[6] S. Kumari, N. K. Arora and G. C. Jain, Solar Energy Materials, 5, 383 (1981).

Google Scholar

[7] Y. Ohshita, Y. Nishikawa, M. Tachibana, V. K. Tuong, T.Sasaki, N. Kojima, S. Tanaka, and M. Yamaguchi, J. Cryst. Growth, 275, e4 91 (2005).

Google Scholar

[8] J. Chen, T. Sekiguchi, R. Xie, P. Ahmet, T. Chikyow, D. Yang, S. Ito, and F. Yin, Scr. Mater., 52, 1211 (2005).

Google Scholar

[9] K. Arafune, E. Ohiishi, H. Sai, Y. Terada, Y. Ohshita, and M. Yamaguchi, Jpn. J. Appl. Phys., 45, 6153 (2006).

Google Scholar

[10] T. Tachibana, J. Masuda, K. Imai, A. Ogura, Y. Ohshita, K. Arafune, and M. Tajima, Jpn. J. Appl. Phys., 48, 121202 (2009).

DOI: 10.1143/jjap.48.121202

Google Scholar

[11] J. Chen and T.Sekiguchi, Jpn. J. Appl. Phys., 46, 6489 (2007).

Google Scholar

[12] J. Chen, T. Sekiguchi, S. Nara, and D. Yang, J. Phys.: Condens. Matter, 16, S211, (2004).

Google Scholar

[13] A. A. Istratov, H. Hieslmair, and E. R. Weber, Appl. Phys. A: Mater. Sci. Process, 69, 13 (1999).

Google Scholar

[14] A. A. Istratov, P. Zhang, R. J. McDonald, A.R. Smith, M. Seacrist, J. Moreland, J.shen, R. Wahlich, and E. R. Weber, J. Appl. Phys., 97, 023505 (2005).

DOI: 10.1063/1.1836852

Google Scholar

[15] F. Secco d'Aragona, J. Electrochem. Soc., 119, 948 (1972).

Google Scholar

[16] T. Buonassisi, A. A. Istratov, S. Peters. C. Ballif, J. Isenberg, S. Riepe, W. Warta, R. Schindler, G. Willeke, Z. Cai, B. Lai, and E. R. Weber, Appl, Phys. Lett., 87, 121918 (2005).

DOI: 10.1063/1.2048819

Google Scholar

[17] W. T. Read and W. Shockley, Phys. Rev., 78, 275 (1950).

Google Scholar

[18] S. M. Sze and J. C. Irvin, Solid-State Electronics, 11, 599 (1968).

Google Scholar