Effect of the Injection Moulding Processing Conditions on Biopolymers Final Properties

Article Preview

Abstract:

This research work intended to study the effect of the main injection moulding parameters in the final properties of biopolymers mouldings. An experimental procedure was carried out in which four biopolymers containing different composition percentages of poly-lactic acid (PLA) and plasticized starch (PLS) were compared with polypropylene (PP). For each material the effect of the processing conditions (mould temperature, injection temperature and holding pressure) on the final properties was discussed and the possibility of using biopolymers as a substitute of PP in household utility products was evaluated.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 730-732)

Pages:

20-25

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Anuradha and V.G. Kumar. Advances in contemporary research, environmentally degradable-thermoplastics: an overview. Indian Journal Chemistry 38 (1999) 525-531.

Google Scholar

[2] M. Avella, M.E. Errico, R. Rimedio and P. Sadocco. Preparation of biodegradable polyesters/high-amylose-starch composites by reactive blending and their characterization. Journal of Applied Polymer Science 83 (2002) 1432-1442.

DOI: 10.1002/app.2304

Google Scholar

[3] L. Avérous. Biodegradable multiphase systems based on plasticized starch. Journal of Macromolecular Science 44(3) (2004) 231-274.

DOI: 10.1081/mc-200029326

Google Scholar

[4] J.G. Gutierrez, P. Partal, M.G. Morales and C. Gallegos. Development of highly-transparent protein/starch-based bioplastics. Bioresource Technology 101 (2010) 2007–2013.

DOI: 10.1016/j.biortech.2009.10.025

Google Scholar

[5] R. Narayan. Drivers for biodegradable/compostable plastics and role of composting in waste management and sustainable agriculture Report paper. Orbit Journal 1(1) (2001) 1-9.

Google Scholar

[6] Q. Shi, C. Chen, L. Gao, L. Jiao, H. Xu and W. Guo. Physical and degradation properties of binary or ternary blends composed of poly (lactic acid), thermoplastic starch and GMA grafted POE. Polymer Degradation and Stability 96 (2011) 175e182.

DOI: 10.1016/j.polymdegradstab.2010.10.002

Google Scholar

[7] N. Cañigueral, F. Vilaseca, J.A. Méndez, J.P. López, L. Barberà, J. Puig, M.A. Pèlach and P. Mutjé. Behavior of biocomposite materials from flax strands and starch-based biopolymer. Chemical Engineering Science 64 (2009) 2651-2658.

DOI: 10.1016/j.ces.2009.02.006

Google Scholar

[8] M. Flieger, M. Kantorová, A. Prell, T. Rezanka and J. Votruba. Biodegradable plastics from renewable sources. Folia Microbiologica 48(1) (2003) 27-44.

DOI: 10.1007/bf02931273

Google Scholar

[9] M. Johnson, N. Tuckerb, S. Barnesc and K. Kirwan. Improvement of the impact performance of a starch based biopolymer via the incorporation of Miscanthus giganteus fibres. Industrial Crops and Products 22 (2005) 175-186.

DOI: 10.1016/j.indcrop.2004.08.004

Google Scholar

[10] A.K. Mohant, M. Misra and G. Hinrichsen. Biofibres, biodegradable polymers and biocomposites: an overview. Macromolecular Materials and Engineering 276 (3-4) (2000) 1-24.

DOI: 10.1002/(sici)1439-2054(20000301)276:1<1::aid-mame1>3.0.co;2-w

Google Scholar

[11] S. Guessasma and D.H. Bassir, 2010. Identification of mechanical properties of biopolymer composites sensitive to interface effect using hybrid approach. Mechanics of Materials 42 (2010) 344-353.

DOI: 10.1016/j.mechmat.2009.12.001

Google Scholar

[12] H. Liu, F. Xie, L. Yu, L. Chen and L. Li. Thermal processing of starch-based polymers. Progress in Polymer Science 34 (2009) 1348-1368.

DOI: 10.1016/j.progpolymsci.2009.07.001

Google Scholar

[13] M. Wollerdorfer and H. Bader. Influence of natural fibers on the mechanical properties of biodegradable polymers. Industrial Crops and Products 8 (1998) 105–112.

DOI: 10.1016/s0926-6690(97)10015-2

Google Scholar

[14] S.L. Yang, Z.H. Wu, W. Yang and M.B. Yang. Thermal and mechanical properties of chemical crosslinked polylactide (PLA). Polymer Testing 27 (2008) 957–963.

DOI: 10.1016/j.polymertesting.2008.08.009

Google Scholar