[1]
C. Borgianni, P. De Filippis, F. Pochetti, M. Paolucci. Gasification process of wastes containing PVC. Fuel 81 (2002) 1827-1833.
DOI: 10.1016/s0016-2361(02)00097-2
Google Scholar
[2]
T. Kamo, Y. Yamamoto, K. Miki, Y. Sato. Conversion of waste polyvinyl chloride (PVC) to useful chemicals. Resources and Environment. 305, Japan (1996).
Google Scholar
[3]
R. Zevenhoven, E. Axelsen, M. Hupa. Pyrolysis of waste-derived fuel mixtures containing PVC. Fuel 81 (2002) 507-510.
DOI: 10.1016/s0016-2361(01)00168-5
Google Scholar
[4]
S. Ma, J. Lu, J. Gao. Study of the Low Temperature Pyrolysis of PVC. Energy & Fuels 16, (2002) 338-342.
DOI: 10.1021/ef0101053
Google Scholar
[5]
F. Lewis, C. Ablow. Pyrogas From Biomass. Presented to a conference on capturing the sun through bioconversion, Washington, D.C., Shoreham Americana Hotel. Stanford research institute (1976).
Google Scholar
[6]
Z. Zevenhoven, R. Saeed, L. Fogelholm. "Optimisation of a two-stage combustion process for high-PVC solid wastes with HCl recovery" accepted for presentation at ECOS2000, Enschede (the Netherlands), July 4-7, (2000)
Google Scholar
[7]
L. Tiikma, I. Johannes, H. Luik. Fixation of chlorine evolved in pyrolysis of PVC waste by Estonian oil shales. Journal of Analytical and Applied Pyrolysis 75 (2006) 205–210.
DOI: 10.1016/j.jaap.2005.06.001
Google Scholar
[8]
Y. Takeshita, K. Kato, K. Takahashi, Y. Sato, S. Nishi. Basic study on treatment of waste polyvinyl chloride plastics by hydrothermal decomposition in subcritical and supercritical regions. The Journal of Supercritical Fluids 31 (2004) 185–193.
DOI: 10.1016/j.supflu.2003.10.006
Google Scholar
[9]
S. Kim. Pyrolysis of waste PVC pipe. Waste Management 21 (2001) 609-616.
DOI: 10.1016/s0956-053x(00)00127-6
Google Scholar
[10]
C. Jaksland, E.Rasmussen, T. Rohde. A new technology for treatment of PVC waste. Waste Management 20 (2000) 463±467
DOI: 10.1016/s0956-053x(00)00012-x
Google Scholar
[11]
W. Qiao, Y. Song, S. Yoon, Y. Korai, I. Mochida, S. Yoshiga, H. Fukuda, A. Yamazaki. Carbonization of waste PVC to develop porous carbon material without further activation. Waste Management 26 (2006) 592-598
DOI: 10.1016/j.wasman.2005.06.010
Google Scholar
[12]
S. Qing-lei, S. Xin-gang, L. Yun-liang, Z. He, W. Xiao, C. Chuan-ge, L. Jian-hua. Thermogravimetric-Mass Spectrometric Study of the Pyrolysis Behavior of PVC. Journal of China University of Mining & Technology Vol.17, No.2 (2007).
Google Scholar
[13]
L. Saeed, A. Tohka, M. Haapala, R. Zevenhoven. Pyrolysis and combustion of PVC, PVC-wood and PVC-coal mixtures in a two-stage fluidized bed process. Fuel Processing Technology 85 (2004) 1565-1583.
DOI: 10.1016/j.fuproc.2003.11.045
Google Scholar
[14]
Y. Tanaka, T. Tsuji, T. Shibata, O. Uemaki, H. Itoh. Dehydrochlorination Rate in Thermal Degradation of PVC. School of Engineering, Hokkaido University, Japan (2007) 060-8628.
Google Scholar
[15]
A. Marcilla, M. Beltrán. Kinetic models for the thermal decomposition of commercial PVC resins and plasticizers studied by thermogravimetric analysis. Polymer Degradation and Stability 53, (1996) 251-260.
DOI: 10.1016/0141-3910(96)00089-4
Google Scholar
[16]
M. Slapak, J. Kasteren, A. Drinkenburg. Determination of the pyrolytic degradation kinetics of virgin-PVC and PVC-waste by analytical and computational methods. Computational and Theoretical Polymer Science 10, (2000) 481-489.
DOI: 10.1016/s1089-3156(99)00055-0
Google Scholar
[17]
A. Castro, D. Soares, C. Vilarinho, F. Castro. Kinetics of thermal de-chlorination of PVC under pyrolitic conditions. Waste Management 32 (2012) 847–851.
DOI: 10.1016/j.wasman.2012.01.004
Google Scholar