Properties of Graphene Side Gate Transistors

Article Preview

Abstract:

Epitaxial graphene grown on semiinsulating silicon carbide was used to fabricate side gate graphene transistors. The transconductance of the side gate transistors is comparable to top gate designs. The transconductance decreases with increasing gate width independently on the gate to channel distance in agreement with the transconductance reduction in top gate transistor configu¬rations with increasing channel length. The transconductance of the side gate transistors decreases with increasing channel width due to a decreased specific gate capacitance.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 740-742)

Pages:

1028-1031

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Withers, Th. H. Bointon, M. Dubois, S. Russo, M. Craicun, Nano Lett. 11 (2011) 3912-3916.

Google Scholar

[2] M.Y. Han, B. Özyilmaz, Y. Zhang, P. Kim, Phys, Rev. Lett. 98 (2007) 206805.

Google Scholar

[3] E.V. Castro, K.S. Novoselov, S.V. Morozov, N.M.R. Peres, J.M.B. Lopes dos Santos, J. Nilsson, F. Guinea, A.K. Geim, A.H. Castro Neto, Phys. Rev. Lett. 99 (2007) 216802.

DOI: 10.1103/physrevlett.99.216802

Google Scholar

[4] R. Göckeritz, J. Pezoldt, F. Schwierz, Appl. Phys. Lett. 99 (2011) 173111.

DOI: 10.1063/1.3653469

Google Scholar

[5] F. Munoz-Rojas, J. Fernandez-Rossier, L. Brey, J.J. Palacios, Phys. Rev. B 77 (2008) 045301.

Google Scholar

[6] D.A. Areshkin, S.T. White, Nano Lett. 7 (2007) 3253-3259.

Google Scholar

[7] Y. -M. Lin, C. Dimitrakopoulos, K.A. Jenkins, D.B. Farmer, H. -Y. Chiu, A. Grill, Ph. Avouris, Science 327 (2010) 662.

DOI: 10.1126/science.1184289

Google Scholar

[8] L. Liao, Y.C. Lin, M.Q. Bao, R. Cheng, J.W. Bai, Y. Liu, Y.Q. Qu, K.L. Wang, Y. Huang, X.F. Duan, Nature 467 (2010) 305–308.

Google Scholar

[9] J.S. Moon, D. Curtis, M. Hu, D. Wong, C. McGuirre, P.M. Campbell, G. Jernignagn, J.L. Tedesco, B. VanMil, R. Myers-Ward, C. Eddy, Jr., D.K. Gaskill, IEEE Electr. Dev Lett. 30 (2009) 650-652.

DOI: 10.1109/led.2009.2020699

Google Scholar

[10] C. -T. Chen, T. Low, H. -Y. Chiu, W. Zhu, Electron Dev. Lett. 33 (2012) 330-332.

Google Scholar

[11] X. Li, X. Wu, M. Sprinkle, F. Ming, M. Ruan, Y. Hu, C. Berger, W.A. de Heer, Phys. Status Solidi A 207 (2010) 286-290.

DOI: 10.1002/pssa.200982453

Google Scholar

[12] R. Göckeritz, D. Schmidt, M. Beleitis, G. Seifert, S. Krischok, M. Himmerlich, J. Pezoldt, Mater. Sci. Forum, 679-680 (2011) 785-788.

DOI: 10.4028/www.scientific.net/msf.679-680.785

Google Scholar

[13] Y. -E. Chen, M.S. Fuhrer, Phys. Rev. Lett. 95 (2005) 210-215.

Google Scholar

[14] I. Mercic, M.Y. Han, A.F. Young, B. Ozilmaz, P. Kim, K.L. Shepard, Nature Nanotechnol. 3 (2006) 654-659.

Google Scholar

[15] S.A. Thiele, J.A. Schaefer, F. Schwierz, J. Appl. Phys. 107 (2010) 094505.

Google Scholar

[16] N. Meng, J.F. Fernandez, D. Vignaud, G. Dambrine, H. Happy, IEEE Trans. Electron. Dev., 58 (2011) 1594-1596.

DOI: 10.1109/ted.2011.2119486

Google Scholar

[17] R.A. Pucel, H.A. Haus, H. Statz, Advan. Electron. Electron Phys. 38 (1975) 195-265.

Google Scholar