AlGaN/GaN Based HEMTs on SiC/Si-Substrates: Influences on High Frequency Performance

Article Preview

Abstract:

Al0.35Ga0.65N/GaN- and Al0.2Ga0.8N/AlN/GaN-heterostructures high electron mobility transistors (HEMTs) with a gate length (LG) varying from 1.2 to 0.08 µm were fabricated on silicon Si(111) substrates using a 3C-SiC transition layer. Metal organic chemical vapour deposition (MOCVD) was used to growth the AlGaN-heterostructures and a low pressure chemical vapour deposition (LPCVD) to create the 3C-SiC(111) transition layer preventing Ga-induced melt back etching and Si-out diffusion. Reduced Al content and an AlN interlayer improved the device performance. The HEMTs with LG=0.08µm had a maximum drain current density of 1.25 A/mm and a peak extrinsic transconductance of 400 mS/mm. A unity current gain cut-off frequency (ƒT) of 180 GHz and maximum frequency (ƒmax) of 70 GHz were measured on these devices.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 740-742)

Pages:

1115-1118

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. -F. Wu, D. Kapolnek, J.P. Ibbetson, P. Parikh, B.P. Keller, U.K. Mishra, IEEE Trans. Electr. Dev. 48 (2001) 586-590.

DOI: 10.1109/16.906455

Google Scholar

[2] D. C. Dumka, C. Lee, H. Q. Tsern, P. Saumier, M. Kumar, Electr. Lett. 40 (2004) 1023-1024.

Google Scholar

[3] J. W. Johnson, E. L. Piner, A. Vescan, R. Therrien, P. Rajagopal, J. C. Roberts, J. D. Brown, S. Singhal, K. L. Linthicum, IEEE Electr. Dev. Lett. Vol. 25 (2004) 459-461.

DOI: 10.1109/led.2004.831190

Google Scholar

[4] Y. Cordier, M. Portail, S. Chenot, O. Tottereau, M. Zielinski, Th. Chassagne, J. Cryst. Growth, Vol. 310 (2008) 4417-4423.

DOI: 10.1016/j.jcrysgro.2008.07.063

Google Scholar

[5] A. Dadger, A. Strittmatter, J. Blasing, M. Poschenrieder, O. Contreras, P. Veit, T. Riemann, F. Bertram, A. Reiher, A. Krtschil, A. Diez, T. Hempel, T. Finger, A. Kasic, M. Schubert, D. Bimberg, F. A. Ponce, J. Christen, A. Krost, Phys. Stat. Sol. C 0 (2003).

DOI: 10.1002/pssc.200303122

Google Scholar

[6] T. Takeuchi, H. Amano, K. Hiramatsu, N. Sawaki, I. Akasaki, J. Cryst. Growth Vol. 115 (1991) 634-638.

Google Scholar

[7] Ch. Förster, V. Cimalla, O. Ambacher, J. Pezoldt, Mater. Sci. Forum, 483-485 (2005) 201-204.

DOI: 10.4028/www.scientific.net/msf.483-485.201

Google Scholar

[8] K. Tonisch, W. Jatal, F. Niebelschuetz, H. Romanus, F. Schwierz, U. Baumann, J. Pezoldt, Thin Solid Films 520 (2011) 491-496.

DOI: 10.1016/j.tsf.2011.07.003

Google Scholar

[9] G. K. Reeves, H. B. Harrison, IEEE Electr. Dev. Lett. 3 (1982) 111-113.

Google Scholar

[10] M. Higashiwaki, T. Mimura, T. Matsui, Appl. Phys. Express 1 (2008) 021103-1 - 021103-1.

Google Scholar

[11] M. Higashiwaki, T. Mimura, T. Matsui, IEEE Electr. Dev. Lett. 27 (2006) 16-18.

Google Scholar

[12] V. Kumar, W. Lu, R. Schwindt, A. Kuliev, G. Simin, J. Yang, M. Asif Khan, L. Adesida, IEEE Electr. Dev. Lett. 23 (2002) 455-457.

DOI: 10.1109/led.2002.801303

Google Scholar