Vapor-Phase Catalyst Delivery Method for Growing SiC Nanowires

Article Preview

Abstract:

A method was developed for growing SiC nanowires without depositing a metal catalyst on the targeted surfaces prior to the CVD growth. The proposed method utilizes in-situ vapor-phase catalyst delivery via sublimation of the catalyst from a metal source placed in the hot zone of the CVD reactor, followed by condensation of the catalyst-rich vapor on the bare substrate surface to form the catalyst nanoparticles. The vapor-phase catalyst delivery and the resulting nanowire density was found to be influenced by both the gas flow rate and the catalyst diffusion through the boundary layer above the catalyst source. The origin of undesirable bushes of nanowires and the role of the C/Si ratio were established.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 740-742)

Pages:

209-212

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] X. Li, X. Wang, R. Bondokov, J. Morris, Y.H. An, and T.S. Sudarshan, Journal of Biomedical Materials Research. Part B, Applied Biomaterials 72 (2005), pp.353-61.

Google Scholar

[2] R. Yakimova, R. M. Petoral Jr., G. R. Yazdi, C. Vahlberg, A. Lloyd Spetz, K. Uvdal, J. Phys. D: Appl. Phys. 40 (2007), pp.6435-6442.

DOI: 10.1088/0022-3727/40/20/s20

Google Scholar

[3] P.G. Neudeck, D. J. Spry, A.J. Trunek, L. J. Evans, L. -Y. Chen, G. W. Hunter, and D. Androjna, Mater. Sci. Forum V. 600-603 (2009), pp.1199-1202.

DOI: 10.4028/www.scientific.net/msf.600-603.1199

Google Scholar

[4] K Zekentes and K Rogdakis, J. Phys. D: Appl. Phys. 44 (2011) 133001 (17pp).

Google Scholar

[5] H. Pedersen, S. Leone, O. Kordina, A. Henry, S. -I. Nishizawa, Y. Koshka and E. Janzén, Chemical Reviews (2012) 112, 2434–2453.

DOI: 10.1021/cr200257z

Google Scholar

[6] B. Krishnan, R.V.K.G. Thirumalai, and Y. Koshka , S. Sundaresan, I. Levin and A. V. Davydov, J. N. Merrett, Crystal Growth & Design (2011) 11(2), 538-541.

DOI: 10.1021/cg101405u

Google Scholar

[7] R. V. K. G. Thirumalai, B. Krishnan, A. V. Davydov, J. N. Merrett and Y. Koshka, Cryst. Growth & Design (2012) 12, 2221−2225.

Google Scholar

[8] H.M. Cheng, F. Li, G. Su, H.Y. Pan, L.L. He, X. Sun, M.S. Dresselhaus, Appl. Phys. Let. (1998) 72 (25), 3282-3284.

Google Scholar

[9] K. Wegner, B. Walker, S. Tsantilis, S. E. Pratsinis, Chemical Engineering Science (2002) 57 1753 – 1762.

DOI: 10.1016/s0009-2509(02)00064-7

Google Scholar

[10] R. V. K. G. Thirumalai, B. Krishnan, A. V. Davydov, J. N. Merrett and Y. Koshka, Journal of Materials Research, Available on CJO (2012) doi: 10. 1557/jmr. 2012. 208.

Google Scholar