[1]
X.H. Hou, B.L. Liu, X.B. Deng, et al., Covalent Immobilization of Glucose Oxidase onto Poly(styrene-co-glycidyl methacrylate) Monodisperse Fluorescent Microspheres Synthesized by Dispersion Polymerization. [J] Anal Biochem, 2007, 368: 100-110.
DOI: 10.1016/j.ab.2007.04.034
Google Scholar
[2]
T.H. Chung, H.C. Pan, W.C. Lee. Preparation and Application of Magnetic Poly(styrene-glycidyl methacrylate) Microspheres. J Magn Magn Mater, 2007, 311: 36-40.
DOI: 10.1016/j.jmmm.2006.11.165
Google Scholar
[3]
D. Hérault, C. Saluzzo, R. Duval, et al., Enantiopure Beads: A Tool for Asymmetric Heterogeneous Catalysis. J Mol Catal A: Chem, 2002, 182/183: 249-256.
DOI: 10.1016/s1381-1169(01)00482-4
Google Scholar
[4]
A. Rolland, D. Hérault, F. Touchard, et al., Enantiopure Poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate): A New Material for Supported Catalytic Asymmetric Hydrogen Transfer Reduction. Tetrahedron, 2001, 12: 811-815.
DOI: 10.1016/s0957-4166(01)00129-x
Google Scholar
[5]
G.Y. Sun, Q.H. Shi, Y. Sun. Novel Biporous Polymeric Stationary Phase for High-Speed Protein Chromatography. J Chromatogr A, 2004, 1061: 159-165.
DOI: 10.1016/j.chroma.2004.10.101
Google Scholar
[6]
S.H. Zhang, X. Huang, N.S. Yao, et al., Preparation of Monodisperse Porous Polymethacrylate Microspheres and Their Application in the Capillary Electrochromatography of Macrolide Antibiotics. J Chromatogr A, 2002, 948: 193-201.
DOI: 10.1016/s0021-9673(01)01425-x
Google Scholar
[7]
B.F. Şenkal, N. Bicçk. Glycidyl Methacrylate Based Polymer Resinswith Diethylene Triamine Tetra Acetic Acid Functions for Efficient Removal of Ca(II) and Mg(II). React Funct Polym, 2001, 49: 151-157.
DOI: 10.1016/s1381-5148(01)00075-x
Google Scholar
[8]
C.K. Liu, R.B. Bai, L. Hong. Diethylenetriamine-grafted Poly(glycidylmethacrylate) Adsorbent for Effective Copper Ion Adsorption. J Colloid Interface Sci, 2006, 303: 99-108.
DOI: 10.1016/j.jcis.2006.07.057
Google Scholar
[9]
D. Horák, B. Rittich, A. Panová, et al., Magnetic Microparticulate Carriers with Immobilized Selective Ligands in DNA Diagnostics. Polymer, 2005, 46: 1245-1255.
DOI: 10.1016/j.polymer.2004.11.049
Google Scholar
[10]
S.H. Choi, Y.M. Hwang, K.P. Lee. Separation of Proteins on Polymeric Stationary Phases Grafted with Various Amine Groups. J Chromatogr A, 2003, 987: 323-330.
DOI: 10.1016/s0021-9673(02)01840-x
Google Scholar
[11]
A.V. Reis, O.A. Cavalcanti, A.F. Rubira, et al., Synthesis and Characterization of Hydrogels Formed from a Glycidyl Methacrylate Derivative of Galactomannan. Int J Pharm, 2003, 267: 13-25.
DOI: 10.1016/j.ijpharm.2003.08.001
Google Scholar
[12]
M. Babazadeh. Synthesis and Study of Controlled Release of Ibuprofen from the New Acrylic Type Polymers. Int J Pharm, 2006, 316: 68-73.
DOI: 10.1016/j.ijpharm.2006.02.032
Google Scholar
[13]
M.Y. Arica, G. Bayramoğlu, N. Biçak. Characterisation of Tyrosinase Immobilised onto Spacer-arm Attached Glycidyl Methacrylate-based Reactive Microbeads. Process Biochem, 2004, 39: 2007-(2017).
DOI: 10.1016/j.procbio.2003.09.030
Google Scholar
[14]
N. Biçak, N. Bulutçu, B.F. Şenkal. Modification of Crosslinked Glycidyl Methacrylate-based Polymers for Boron-specific Column Extraction. React Funct Polym, 2001, 47: 175-184.
DOI: 10.1016/s1381-5148(01)00025-6
Google Scholar
[15]
R.B. Zhuang, B.J. Gao. Preparation of Crosslinked Copolymer Microspheres of PGMA−MMA−EGDMA with Suspension Polymerization Method. The Chinese Journal of Process Engineering, 2008, 8(5): 1013-1017.
Google Scholar
[16]
W.Q. Zhou, T.Y. Gu, Z.G. Su, et al., Synthesis of Macroporous Poly(styrene-divinyl benzene) Microspheres by Surfactant Reverse Micelles Swelling Method. Polymer, 2007, 48: 1981-(1988).
DOI: 10.1016/j.polymer.2007.02.003
Google Scholar
[17]
L. Hao, H. Yang, Z.L. Lei. Synthesis and Properties of Thermo-responsive Macroporous PAM-co-PNIPAM Microspheres. Materials Letters, 2012, 70: 83-85.
DOI: 10.1016/j.matlet.2011.11.112
Google Scholar
[18]
D.Z. Yuan, B. Huang. Macroporous P (GMA-DVB-TRIM) Microspheres Supported Diethylenetriamine Palladium Complex: An Efficient and Recyclable Catalyst for Heck Reactions. Catalysis Communications, 2012, 18: 126-131.
DOI: 10.1016/j.catcom.2011.11.032
Google Scholar