[1]
L.G. Yu, Y.H. Zhang, Preparation of Nano-Silver Flake by Chemical Reduction Method, Rare metal Mater. Eng. 39 (2010) 401-404.
DOI: 10.1016/s1875-5372(10)60088-4
Google Scholar
[2]
S.H. Sun, C.B. Murray, D. Weller, et al., Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices, Science 287 (2000) 1989-(1992).
DOI: 10.1126/science.287.5460.1989
Google Scholar
[3]
W.Z. Zhang, X.L. Qiao, J.G. Chen. Preparation of silver nanoparticles in water-in-oil AOT reverse micelles, Colloids and Surfaces A : Physichem . Eng. Aspects 299 (2007) 22-28.
Google Scholar
[4]
S. Babak, S.G. Farshid, M. Hashemi, et al., Comparison of the anti-bacterial activity on the nanosilver shapes: Nanoparticles, nanorods and nanoplates, Adv. Powder Technol. 23(2012) 22-26.
DOI: 10.1016/j.apt.2010.11.011
Google Scholar
[5]
Y. Lu, G.L. Liu, L.P. Lee. High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate, Nano. Lett. 5 (2005) 5-9.
DOI: 10.1021/nl048965u
Google Scholar
[6]
I.O. Sosa, C. Noguez, R.G. Barrera. Optical properties of metal nanoparticles with arbitrary shapes, J. Phys. Chem. B 107 (2003) 6269-6275.
DOI: 10.1021/jp0274076
Google Scholar
[7]
S. Hirano, Y. Wakasa, A. Saka, et al., Preparation of Bi-2223 bulk composed with silver-alloy wire, Phys. C 392 (2003) 458-462.
DOI: 10.1016/s0921-4534(03)01222-x
Google Scholar
[8]
S.P. Wu. Preparation of micron size flake silver powders for conductive thick films, J. Mater. Sci-Mater. Electronics. 18 (2007) 447-452.
DOI: 10.1007/s10854-006-9042-2
Google Scholar
[9]
R.J. Chimentão, I. Kirm, F. Medina, et al., Different morphologies of silver nanoparticles as catalysts for the selective oxidation of styrene in the gas phase, Chem Commun. 7 (2004) 846-847.
DOI: 10.1039/b400762j
Google Scholar
[10]
J.S. Langer, Instabilities and pattern formation in crystal growth, Rev. Mod. Phys. 52(1980) 1-28.
Google Scholar
[11]
Y.C. Zhu, H.G. Zheng, Y. Li, et al., Synthesis of Ag dendritic nanostructures by using anisotropic nickel nanotubes, Mater. Res. Bull. 38 (2003) 1829-1834.
DOI: 10.1016/j.materresbull.2003.08.004
Google Scholar
[12]
Z.R. Tian, J. Liu, J.A. Voigt, et al., Dendritic Growth of Cubically Ordered Nanoporous Materials through Self-Assembly, Nano Lett. 3 (2003) 89-92.
DOI: 10.1021/nl025828t
Google Scholar
[13]
D. Barkey, F. Oberholtzer, Q. Wu, Kinetic Anisotropy and Dendritic Growth in Electrochemical Deposition, Phys. Rev. Lett. 75 (1995) 2980-2983.
DOI: 10.1103/physrevlett.75.2980
Google Scholar
[14]
O. Katzenelson, H.Z. Hel-Or, O. Avnir, Chirality of large random supramolecular structures, Chem. Eur. J. 2 (1996) 174-181.
DOI: 10.1002/chem.19960020209
Google Scholar
[15]
J.P. Xiao,Y. Xie, R. Tang, et al., Novel ultrasonically assisted templated synthesis of palladium and silver dendritic nanostructures, Adv. Mater. 13 (2001) 1887-1891.
DOI: 10.1002/1521-4095(200112)13:24<1887::aid-adma1887>3.0.co;2-2
Google Scholar