High-Efficiency Power Conversion Using Silicon Carbide Power Electronics

Article Preview

Abstract:

The message of this paper is that the silicon carbide power transistors of today are good enough to design converters with efficiencies and switching speeds beyond comparison with corresponding technology in silicon. This is the time to act. Only in the highest power range the devices are missing. Another important step towards high powers is to find new solutions for multi-chip circuit designs that are adapted to the high possible switching speeds of unipolar silicon carbide power transistors.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] J. Rabkowski, D. Peftitsis, and H. -P. Nee, Silicon Carbide Power Transistors - A New Era in Power Electronics is Initiated, Industrial Electronics Magazine, vol. 6, June 2012, pp.17-26.

DOI: 10.1109/mie.2012.2193291

Google Scholar

[2] J. Biela, M. Schweizer, S. Waffler, and J.W. Kolar, SiC versus Si – Evaluation of Potentials for Performance Improvement of Inverter and DC–DC Converter Systems by SiC Power Semiconductors, IEEE Trans. On Ind. Electron., vol. 58, no. 7, p.2872–2882, July (2011).

DOI: 10.1109/tie.2010.2072896

Google Scholar

[3] B. Ållebrand and H. -P. Nee, On the possibility to use SiC JFETs in Power Electronic circuits, Proc. of the European Conference on Power Electronics and Applications (EPE), Graz, Austria, August (2001).

Google Scholar

[4] B. Ållebrand and H. -P. Nee, On the choice of blanking times at turn-on and turn-off for the diode-less SiC JFET inverter bridge, Proc. of the European Conference on Power Electronics and Applications (EPE), Graz, Austria, August (2001).

Google Scholar

[5] R. Shillington, P. Gaynor, M. Harrison, and W. Heffernan, Silicon carbide JFET reverse conduction characteristics, IET Power Electronics, 2012, vol. 5, Iss. 8, p.1282–1290.

DOI: 10.1049/iet-pel.2011.0404

Google Scholar

[6] D. Peftitsis, J. Rabkowski, and H. -P. Nee, Self-powered gate driver for normally on silicon carbide junction field-effect transistors without external power supply, IEEE Trans. On Power Electron., vol. 28, no. 3, p.1488–1501, March (2013).

DOI: 10.1109/tpel.2012.2209185

Google Scholar

[7] J. Rabkowski, G. Tolstoy, D. Peftitsis, and H. -P. Nee, Low-Loss High-Performance Base-Drive Unit for SiC BJTs, vol. 27, no. 5, pp.2633-2643, May (2012).

DOI: 10.1109/tpel.2011.2171722

Google Scholar

[8] G. Tolstoy, D. Peftitsis, J. Rabkowski, H. -P. Nee, and P.R. Palmer, Discretized Proportional Base Driver for Silicon Carbide Bipolar Junction Transistors, Proc. of ECCE ASIA 2013, Melbourne, 4-6 June (2013).

DOI: 10.1109/ecce-asia.2013.6579182

Google Scholar

[9] J. Rabkowski, D. Peftitsis, and H. -P. Nee, Design Steps Toward a 40-kVA SiC JFET Inverter With Natural-Convection Cooling and an Efficiency Exceeding 99. 5%, IEEE Trans. on Ind. Appl., vol. 49, no. 4, pp.1589-1598, July/August (2013).

DOI: 10.1109/tia.2013.2258132

Google Scholar

[10] J. Colmenares, D. Peftitsis, J. Rabkowski, H. -P Nee, Dual-Function Gate Driver for a Power Module With SiC Junction Field-Effect Transistors, Proc. of IEEE ECCE ASIA 2013, Melbourne.

DOI: 10.1109/ecce-asia.2013.6579104

Google Scholar

[11] J. Rabkowski, D. Peftitsis, M. Zdanowski, H. -P. Nee, A 6 kW, 200 kHz Boost Converter with Parallel-Connected SiC Bipolar Transistors, Proc. of IEEE Applied Power Electronics Conference and Exposition 2013, APEC 2013, March (2013).

DOI: 10.1109/apec.2013.6520568

Google Scholar

[12] A. Lesnicar and R. Marquardt, An innovative modular multilevel converter topology suitable for a wide power range, Proc. IEEE Bologna Power Tech, 2012, vol. 3, (2003).

DOI: 10.1109/ptc.2003.1304403

Google Scholar

[13] D. Peftitsis, G. Tolstoy, A. Antonopoulos, J. Rabkowski, J. -K. Lim, M. Bakowski, L. Ängquist, and H. -P. Nee, High-Power Modular Multilevel Converters With SiC JFETs, IEEE Transactions on Power Electronics, vol. 27, no. 1, January 2012, pp.28-36.

DOI: 10.1109/tpel.2011.2155671

Google Scholar