Polarized Photoluminescence from Partial Dislocations in 4H-SiC

Article Preview

Abstract:

Polarization characteristics of luminescence from partial dislocations (PDs) in 4H-SiC have been investigated by room-temperature photoluminescence (PL) imaging. After expansion of Shockley stacking faults by high-power laser irradiation, PL from PDs tilted by 6° from their Burgers vector (6°-PDs) was observed with almost the same PL peak energy as that of 30°-Si (g) PDs. The PL from the 30°-Si (g) and 6°-PDs which were mobile under illumination were both found to be polarized perpendicular to their dislocation lines. In contrast, the PL from immobile 30°-C(g) PDs was not polarized. The present results suggest that the carriers bound to the 30°-Si (g) and 6°-PDs have anisotropic wave functions and those bound to 30°-C(g)PDs have isotropic wave functions.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 778-780)

Pages:

319-323

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. P. Bergman, H. Lendenmann, P. Å. Nilsson, U. Lindefelt, and P. Skytt: Mater. Sci. Forum Vol. 353-356 (2001), p.299.

DOI: 10.4028/www.scientific.net/msf.353-356.299

Google Scholar

[2] H. Lendenmann, F. Dahlquist, N. Johansson, R. Söderholm, P. Å. Nilsson, J. P. Bergman, and P. Skytt: Mater. Sci. Forum Vol. 353-356 (2001), p.727.

DOI: 10.4028/www.scientific.net/msf.353-356.727

Google Scholar

[3] S. Ha, M. Benamara, M. Skowronski, and H. Lendenmann: Appl. Phys. Lett. Vol. 83 (2003), p.4957.

Google Scholar

[4] M. Skowronski, J. Q. Liu, W. M. Vetter, M. Dudley, C. Hallin, and H. Lendenmann: J. Appl. Phys. Vol. 92 (2002), p.4699.

Google Scholar

[5] R. Hirano, Y. Sato, H. Tsuchida, M. Tajima, K.M. Itoh, and K. Maeda: Appl. Phys. Express Vol. 5 (2012), p.091302.

DOI: 10.1143/apex.5.091302

Google Scholar

[6] A. Galeckas, J. Linnros, and P. Pirouz: Phys. Rev. Lett. Vol. 96 (2006) p.025502.

Google Scholar

[7] A. Galeckas, J. Linnros, and P. Pirouz: Appl. Phys. Lett. Vol. 81 (2002), p.883.

Google Scholar

[8] A. O. Konstantinov and H. Bleichner: Appl. Phys. Lett. Vol. 71 (1997), p.3700.

Google Scholar

[9] K. X. Liu, R. E. Stahlbush, S. I. Maximenko, and J. D. Caldwell: Appl. Phys. Lett. Vol. 90 (2007), p.153503.

Google Scholar

[10] M. Suezawa, Y. Sasaki, Y. Nishina, and K. Sumino: Jpn. J. Appl. Phys. Vol. 20 (1981), p. L537.

DOI: 10.1143/jjap.20.l537

Google Scholar

[11] E. Depraetere, D. Vignaud, and J. L. Farvacque: Solid State Commun. Vol. 64 (1987), p.1465.

Google Scholar

[12] I. Kiflawi and A. R. Lang: Philos. Mag. Vol. 30 (1974), p.219.

Google Scholar

[13] N. Yamamoto, J. C. H. Spence, and D. Fathy: Philos. Mag. B Vol. 49 (1984), p.609.

Google Scholar

[14] H. Sugimoto and M. Tajima: Jpn. J. Appl. Phys. Vol. 46 (2007), p. L339.

Google Scholar

[15] M. P. Peloso, B. Hoex, and A. G. Aberle: Appl. Phys. Lett. Vol. 98 (2011), p.171914.

Google Scholar

[16] N. A. Mahadik, R. E. Stahlbush, J. D. Caldwell, and K. D. Hobart: Mater. Sci. Forum Vol. 717-720 (2012), p.391.

Google Scholar

[17] Y. Ohno, I. Yonenaga, K. Miyao, K. Maeda, and H. Tsuchida: Appl. Phys. Lett. Vol. 101 (2012), p.042102.

Google Scholar

[18] M. Razumova and V. Khotyaintsev: Phys. Status Solidi B Vol. 174 (1992), p.165.

Google Scholar

[19] T. A. G. Eberlein, R. Jones, A. T. Blumenau, S. Öberg, and P. R. Briddon: Physica Status Solidi C Vol. 4 (2007), p.2923.

DOI: 10.1002/pssc.200775437

Google Scholar