Basal Plane Dislocations from Inclusions in 4H-SiC Epitaxy

Article Preview

Abstract:

Suppression of basal plane dislocations (BPDs) from critical epitaxial drift layer has occurred mainly by converting BPDs in the substrate into threading edge dislocations before the BPDs enter the drift layer. As optimized epitaxial growth has produced drift layers free of BPDs originating from the substrate over a large fraction of the wafer, other sources of BPDs have become important. One source of BPDs introduced during epitaxial growth is from inclusions, which mainly consist of misoriented 4H-SiC. Inclusions are surrounded by a local cluster of BPDs and in thick, low-BPD epitaxy the outermost BPDs glide centimeters from the inclusion forming a much larger damaged area. The details of BPD migration from inclusions are discussed.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 778-780)

Pages:

309-312

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Galeckas, J. Linnros and P. Pirouz, Appl. Phys. Lett, 81, 883 (2002).

Google Scholar

[2] J. P. Bergmann, H. Lendenmann, P. A. Nilsson, U. Lindefelt and P. Skytt, Mater. Sci. Forum 353-356, 299 (2001).

Google Scholar

[3] R. E. Stahlbush, M. Fatemi, J. B. Fedison, S. D. Arthur, L. B. Rowland and S. Wang, J. Elec. Mater. 31, 370 (2002).

Google Scholar

[4] A. Kuhr, J. Q. Liu, H. J. Chung and M. Skowronski, J. Appl. Phys. 92, 5863 (2002).

Google Scholar

[5] A. Agarwal, H. Fatima, S. Haney and S. H. Ryu, IEEE Elec. Dev. Lett. 28, 587 (2007).

Google Scholar

[6] R. E. Stahlbush, Q. Zhang, A. Agarwal, N. A. Mahadik, , Mater. Sci. Forum 717-720, 387 (2012).

Google Scholar

[7] M. Dudley, N. Zhang, Y. Zhang, B. Roghothamachar, S. Byrappa, G. Choi, E. K. Sanchez, D. Hansen, R. Ddrachev and M. J. Loboda, Mater. Sci. Forum, 645-648, 291 (2010).

Google Scholar

[8] R. L. Myers-Ward, B. L. VanMil, R. E. Stahlbush, S. L. Katz, J. M. McCrate, S. A. Kitt, C. R. Eddy, Jr. and D. K. Gaskill, Mater. Sci. Forum, 615-617, 105 (2009).

DOI: 10.4028/www.scientific.net/msf.615-617.105

Google Scholar

[9] R. E. Stahlbush, K. X. Liu, Q. Zhang and J. J. Sumakeris, Mater. Sci. Forum, 556-557, 295 (2007).

Google Scholar

[10] N. A. Mahadik, R. E. Stahlbush, S. B. Qadri, O. J. Glembocki, D. A. Alexson, K. D. Hobart, J. D. Caldwell, R. L. Myers-Ward, J. L. Tedesco, D. K. Gaskill and C. R. Eddy, Jr., J. Elec. Mater., 40, 413 (2011).

DOI: 10.1007/s11664-011-1570-8

Google Scholar

[11] X. Zhang, L. Li, M. Skowronski, J. J. Sumakeris, M. J. Paisley, and M. J. O'Loughlin, J. Appl. Phys., 105, 123529 (2009).

Google Scholar

[12] R. E. Stahlbush, B. L. VanMil, R. L. Myers-Ward, K. K. Lew, D. K. Gaskill and C. R. Eddy, Jr., Appl. Phys. Lett., 94, 041916 (2009).

DOI: 10.1063/1.3070530

Google Scholar

[13] Z. Zhang and T.S. Sudarshan, Appl. Phys. Lett., 87, 161917 (2005).

Google Scholar

[14] S. Ha, H. J. Chung, N. T. Nuhfer and M. Skowronski, J. Cryst. Growth, 262, 130 (2004).

Google Scholar

[15] X. Zhang, M. Skowronski, K. X. Liu, R. E. Stahlbush, J. J. Sumakeris, M. J. Paisley and M. J. O'Loughlin, J. Appl. Phys., 102, 093520 (2007).

Google Scholar

[16] R. E. Stahlbush, B. L. VanMil, K. X. Liu, K. K. Lew, R. L. Myers-Ward, D. K. Gaskill, C. R. Eddy, Jr., X. Zhang and M. Skowronski, Mater. Sci. Forum, 600-603, 317 (2009).

DOI: 10.4028/www.scientific.net/msf.600-603.317

Google Scholar

[17] N. Zhang, Y. Chen, Y. Zhang, M. Dudley and R. E. Stahlbush, Appl. Phys. Lett., 94, 122108 (2009).

Google Scholar