An Investigation of Hardness Homogeneity and Microstructure in Pure Titanium Processed by High Pressure Torsion

Article Preview

Abstract:

High-pressure torsion (HPT) was conducted on disks of commercial purity Ti under applied pressures of 3 and 6 GPa. Measurements of the Vickers microhardness showed improving hardness homogeneity with increasing numbers of HPT turns. Transmission electron microscopy demonstrated that a higher HPT pressure leads to a smaller grain size after straining and these grains contain a high dislocation density with arrays of twins. This is consistent with the higher hardness of the Ti samples processed by HPT under 6 GPa pressure.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 783-786)

Pages:

2701-2706

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.Z. Valiev, T.G. Langdon, Prog. Mater. Sci. 51 (2006) 881.

Google Scholar

[2] A.P. Zhilyaev, T.G. Langdon, Prog. Mater. Sci. 53 (2008) 893.

Google Scholar

[3] R.K. Islamgaliev, V.U. Kazyhanov, L.O. Shestakova, A.V. Sharafutdinov, R.Z. Valiev, Mater. Sci. Eng. A493 (2008) 190.

Google Scholar

[4] I.P. Semenova, A.V. Polyakov, G.I. Raab, T.C. Lowe, R.Z. Valiev, J. Mater. Sci. 47 (2012) 7777.

Google Scholar

[5] A. Balyanov, J. Kutnyakova, N.A. Amirkhanova, V.V. Stolyarov, R.Z. Valiev, X.Z. Liao, Y.H. Zhao, Y.B. Jiang, H.F. Xu, T.C. Lowe, Y.T. Zhu, Scripta Mater. 51 (2004) 225.

Google Scholar

[6] C.T. Wang, N. Gao, M.G. Gee, R.J.K. Wood, T.G. Langdon, Wear 280 (2012) 28.

Google Scholar

[7] C.T. Wang, N. Gao, M.G. Gee, R.J.K. Wood, T.G. Langdon, J. Mech. Behav. Biomed. Mater. 17 (2013) 166.

Google Scholar

[8] C.T. Wang, A. Escudeiro, T. Polcar, A. Cavaleiro, R.J.K. Wood, N. Gao, T.G. Langdon, Wear (2013) in press.

Google Scholar

[9] Y. Okazaki, E. Gotoh, Corros. Sci. 50 (2008) 3429.

Google Scholar

[10] S. Makihira, Y. Mine, H. Nikawa, T. Shuto, S. Iwata, R. Hosokawa, K. Kamoi, S. Okazaki, Y. Yamaguchi, Toxicol. In Vitro. 24 (2010) (1905).

DOI: 10.1016/j.tiv.2010.07.023

Google Scholar

[11] R.B. Figueiredo, P.H.R. Pereira, M.T.P. Aguilar, P.R. Cetlin, T.G. Langdon, Acta Mater. 60 (2012) 3190.

Google Scholar

[12] C. Xu, Z. Horita, T.G. Langdon, Acta Mater. 56 (2008) 5168.

Google Scholar

[13] M. Kawasaki, T.G. Langdon, Mater. Sci. Eng. A498 (2008) 341.

Google Scholar

[14] S. Sabbaghianrad, M. Kawasaki, T.G. Langdon, J. Mater. Sci. 47 (2012) 7789.

Google Scholar

[15] J. Wongsa-Ngam, M. Kawasaki, T.G. Langdon, J. Mater. Sci. 47 (2012) 7782.

Google Scholar

[16] Y. Todaka, J. Sasaki, T. Moto, M. Umemoto, Scripta Mater. 59 (2008) 615.

Google Scholar

[17] Y. Ivanisenko, A. Kilmametov, H. Rösner, R.Z. Valiev, Int. J. Mat. Res. 99 (2008) 36.

Google Scholar

[18] A.V. Podolskiy, C. Mangler, E. Schafler, E.D. Tabachnikova, M.J. Zehetbauer, J. Mater. Sci. 48 (2013) 4689.

Google Scholar

[19] K. Edalati, E. Matsubara, Z. Horita, Metall. Mater. Trans. 40A (2009) (2079).

Google Scholar

[20] W.F. Ho, J. Med. Biol. Eng. 28 (2008) 47.

Google Scholar

[21] X.F. Zhao, M. Niinomi, M. Nakai, J. Hieda, Mater. Trans. 53 (2012) 1379.

Google Scholar