Micro-Tensile Behavior at a High Temperature in an AZ31 Magnesium Alloy Processed by ECAP

Article Preview

Abstract:

A magnesium AZ31 alloy was processed by ECAP at a temperature of 473 K using a die with a channel of 110o. The results show that the grain size was reduced from 5.4 μm to ~1.0 μm. Micro-tensile tests of the AZ31 alloy were conducted using as-received and ECAP-processed AZ31 alloy at a temperature of 473 K. The ductility of the AZ31 alloy can be improved significantly after ECAP processing at high temperature, which demonstrates a potential application in micro-forming technology for the UFG AZ31 alloy.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 783-786)

Pages:

2726-2731

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Prog. Mater. Sci. 45 (2000) 103-189.

Google Scholar

[2] R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, Y.T. Zhu, JOM. 58(4) (2006) 33-39.

Google Scholar

[3] R.Z. Valiev, T.G. Langdon, Prog. Mater. Sci. 51 (2006) 881-981.

Google Scholar

[4] A.P. Zhilyaev, T.G. Langdon, Prog. Mater. Sci. 53 (2008) 893-979.

Google Scholar

[5] Y. Saito, H. Utsunomiya, N. Tsuji, T. Sakai, Acta. Mater. 47 (1999) 579-583.

Google Scholar

[6] Z. Horita, T. Fujinami, T.G. Langdon, Mater. Sci. Eng. A318 (2001) 34-41.

Google Scholar

[7] P.K. Chaudhury, B. Cherukuri, R. Srinivasan, Mater. Sci. Eng. A410-411 (2005) 316-318.

Google Scholar

[8] Y. Estrin, M. Janecek, G.I. Raab, R.Z. Valiev, A. Zi, Metall. Mater. Trans. A 38A (2007) 1906-(1909).

Google Scholar

[9] W.J. Kim, Y.K. Sa, Scripta. Mater. 54 (2006) 1391-1395.

Google Scholar

[10] X. Ma, R. Lapovok, C. Gu, A. Molotnikov, Y. Estrin, E.V. Pereloma, C.H.J. Davies, P.D. Hodgson, J. Mater. Sci. 44 (2009) 3807-3812.

DOI: 10.1007/s10853-009-3515-7

Google Scholar

[11] X.G. Qiao, N. Gao, Z. Moktadir, M. Kraft, M.J. Starink, J. Micromech. Microeng. 20 (2010) 045029.

DOI: 10.1088/0960-1317/20/4/045029

Google Scholar

[12] F. Vollertsen, D. Biermann, H.N. Hansen, I.S. Jawahir, K. Kuzman, CIRP Ann. Manuf. Techn. 58 (2009) 566-587.

DOI: 10.1016/j.cirp.2009.09.002

Google Scholar

[13] J. Xu, B. Guo, D.B. Shan, Int. J. Adv. Manuf. Technol. 56 (2011) 515-522.

Google Scholar

[14] W.L. Chan, M.W. Fu, Mater. Sci. Eng. A528 (2011) 7674-7683.

Google Scholar

[15] J. Xu, B. Guo, C.J. Wang, D.B. Shan, Int. J. Machine Tools Manuf. 60 (2012) 27-34.

Google Scholar

[16] N. Warthi, P. Ghosh, A.H. Chokshi, Scripta Mater. 68 (2013) 225-228.

Google Scholar

[17] R.B. Figueiredo, T.G. Langdon, J. Mater. Sci. 43 (2008) 7366-7371.

Google Scholar

[18] R.B. Figueiredo, T.G. Langdon, Mater. Sci. Eng. A556 (2012) 211-220.

Google Scholar

[19] H.K. Lin, J.C. Huang, T.G. Langdon, , Mater. Sci. Eng. A 402 (2005) 250-257.

Google Scholar

[20] C. Xu, K. Xia, T.G. Langdon, Mater. Sci. Eng. A527 (2009) 205-211.

Google Scholar

[21] S. Komura, M. Furukawa, Z. Horita, M. Nemoto, T.G. Langdon, Mater. Sci. Eng. A297 (2001) 111-118.

Google Scholar

[22] R.B. Figueiredo, T.G. Langdon, J. Mater. Sci. 44 (2009) 4758-4762.

Google Scholar

[23] A. Yamashita, Z. Horita, T.G. Langdon, Mater. Sci. Eng. A300 (2001) 142-147.

Google Scholar

[24] R.B. Figueiredo, T.G. Langdon, Mater. Sci. Eng. A501 (2009) 105-114.

Google Scholar

[25] R.B. Figueiredo, S. Terzi, T.G. Langdon, Acta Mater. 58 (2010) 5737-5748.

Google Scholar

[26] T.G. Langdon, J. Mater. Sci. 44(2009) 5998-6010.

Google Scholar