In Situ Investigation of Grain Migration by TGZM during Solidification in a Temperature Gradient

Article Preview

Abstract:

Temperature Gradient Zone Melting (TGZM) occurs when a liquidsolid zone is submitted to a temperature gradient and leads to the migration of liquid droplets or channels through the solid, up the temperature gradient. TGZM has a major influence on the preparation of the initial solid-liquid interface during the stabilization phase following the directional melting of an alloy and is at the origin of the diffusion of solute towards the top part of the mushy zone. TGZM is also causing the migration up the temperature gradient of dendrite secondary arms during directional solidification, which can have a significant impact on the micro-segregation pattern of the final microstructure. In this communication we report on a directional solidification experiment carried out at the European Synchrotron Radiation Facility (ESRF) in Grenoble (France) on Al4.0 wt.% Cu alloy to study the dynamics induced by the TGZM phenomenon on an equiaxed grain that nucleated in front of a columnar structure. Based on in situ experimental observations obtained by synchrotron X-ray radiography, the dissolution of the bottom part of the equiaxed grain is characterized and measurements are compared with predictions of the TGZM theory in diffusive regime.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 790-791)

Pages:

323-328

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Pfann, Temperature gradient zone melting, Trans. Met. Soc. AIME 203 (1955) 961–964.

Google Scholar

[2] W.A. Tiller, Migration of a Liquid Zone through a Solid: Part I, J. Appl. Phys. 34 (1963) 2757–2762.

Google Scholar

[3] D.J. Allen, J.D. Hunt, Temperature gradient zone melting and microsegregation in castings, Proc. Int. Conf. Soldification Cast. Met. (1979) 39–43.

Google Scholar

[4] K. Kobayashi, Y. Seko, P.H. Shingu, Direct Microscopic Observation of Dendritic Crystal Growth in Succinonitrile-6 mass% Camphor, J. Jpn. Inst. Met. 45 (1981) 647–651.

DOI: 10.2320/jinstmet1952.45.6_647

Google Scholar

[5] M. Rettenmayr, M. Buchmann, Solidification and Melting – Asymmetries and Consequences, Mater. Sci. Forum 508 (2006) 205–210.

DOI: 10.4028/www.scientific.net/msf.508.205

Google Scholar

[6] H. Nguyen Thi, B. Drevet, J.M. Debierre, D. Camel, Y. Dabo, B. Billia, Preparation of the initial solid–liquid interface and melt in directional solidification, J. Cryst. Growth 253 (2003) 539–548.

DOI: 10.1016/s0022-0248(03)01041-8

Google Scholar

[7] H. Nguyen Thi, G. Reinhart, A. Buffet, T. Schenk, N. Mangelinck-Noël, H. Jung, N. Bergeon, B. Billia, J. Härtwig, J. Baruchel, In situ and real-time analysis of TGZM phenomena by synchrotron X-ray radiography, J. Cryst. Growth 310 (2008).

DOI: 10.1016/j.jcrysgro.2008.01.041

Google Scholar

[8] B. Li, H.D. Brody, A. Kazimirov, Synchrotron microradiography of temperature gradient zone melting in directional solidification, Met. Mater. Trans. 37 (2006) 1039–1044.

DOI: 10.1007/s11661-006-0076-0

Google Scholar

[9] G. Salloum Abou Jaoudé, G. Reinhart, H. Nguyen-Thi, H. Combeau, M. Založnik, T. Schenk, T. Lafford, In situ experimental observation of the time evolution of a dendritic mushy zone in a fixed temperature gradient, Comptes Rendus Mécanique 341 (2013).

DOI: 10.1016/j.crme.2013.01.013

Google Scholar

[10] H. Nguyen-Thi, L. Salvo, R.H. Mathiesen, L. Arnberg, B. Billia, M. Suery, G. Reinhart, On the interest of synchrotron X-ray imaging for the study of solidification in metallic alloys, Comptes Rendus Phys. 13 (2012) 237–245.

DOI: 10.1016/j.crhy.2011.11.010

Google Scholar

[11] H. Nguyen-Thi, H. Jamgotchian, J. Gastaldi, J. Härtwig, T. Schenk, H. Klein, B. Billia, J. Baruchel, Y. Dabo, Preliminary in situ and real-time study of directional solidification of metallic alloys by x-ray imaging techniques, J. Phys. Appl. Phys. 36 (2003).

DOI: 10.1088/0022-3727/36/10a/317

Google Scholar

[12] G. Reinhart, A. Buffet, H. Nguyen-Thi, B. Billia, H. Jung, N. Mangelinck-Noël, N. Bergeon, T. Schenk, J. Härtwig, J. Baruchel, In-Situ and Real-Time Analysis of the Formation of Strains and Microstructure Defects during Solidification of Al-3. 5 Wt Pct Ni Alloys, Met. Mater. Trans. 39 (2008).

DOI: 10.1007/s11661-007-9449-2

Google Scholar

[13] A. Buffet, H. Nguyen-Thi, A. Bogno, T. Schenk, N. Mangelinck-Noël, G. Reinhart, N. Bergeon, B. Billia, J. Baruchel, Measurement of Solute Profiles by Means of Synchrotron X-Ray Radiography during Directional Solidification of Al-4 wt% Cu Alloys, Mater. Sci. Forum 649 (2010).

DOI: 10.4028/www.scientific.net/msf.649.331

Google Scholar

[14] A. Bogno, H. Nguyen-Thi, A. Buffet, G. Reinhart, B. Billia, N. Mangelinck-Noël, N. Bergeon, J. Baruchel, T. Schenk, Analysis by synchrotron X-ray radiography of convection effects on the dynamic evolution of the solid–liquid interface and on solute distribution during the initial transient of solidification, Acta Mater. 59 (2011).

DOI: 10.1016/j.actamat.2011.03.059

Google Scholar

[15] A. Bogno, H. Nguyen-Thi, G. Reinhart, B. Billia, J. Baruchel, Growth and interaction of dendritic equiaxed grains: In situ characterization by synchrotron X-ray radiography, Acta Mater. 61 (2013) 1303–1315.

DOI: 10.1016/j.actamat.2012.11.008

Google Scholar