Identification of Grain Boundary Segregation Mechanisms during Silicon Bi-Crystal Solidification

Article Preview

Abstract:

Small angle grain boundaries have been grown in a small Bridgman furnace, using seeded growth method, at three different pulling rates i.e. 3 μm/s, 13 μm/s and 40 μm/s. In order to assess segregation mechanisms of impurities towards the central grain boundary, melt has been polluted by 50ppma of either copper or indium. Secondary ion mass spectrometry (SIMS) local analyses have been performed to investigate the impact of solid state diffusion and limited rejection of solute at the grain boundary for each growth rate. The results are discussed in connection with an atomistic model built on Vienna Ab-initio Simulation Package (VASP).

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 790-791)

Pages:

329-334

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Davis Jr J.R. et al., Impurities in silicon solar cells. IEEE Transactions on Electron Devices, 1980. ED-27(4): pp.677-687.

Google Scholar

[2] Coletti G., Sensitivity of state-of-the-art and high efficiency crystalline silicon solar cells to metal impurities. Progress in Photovoltaics: Research and Applications, 2012: p. n/a-n/a.

DOI: 10.1002/pip.2195

Google Scholar

[3] Buonassisi T. et al., Metal precipitation at grain boundaries in silicon: Dependence on grain boundary character and dislocation decoration. Applied Physics Letters, 2006. 89(4): pp.042102-3.

DOI: 10.1063/1.2234570

Google Scholar

[4] Chen J. et al., Electron-beam-induced current study of grain boundaries in multicrystalline silicon. Journal of Applied Physics, 2004. 96(10): pp.5490-5495.

DOI: 10.1063/1.1797548

Google Scholar

[5] Chen J. et al., Recombination activity of σ3 boundaries in boron-doped multicrystalline silicon: Influence of iron contamination. Journal of Applied Physics, 2005. 97(3): pp.033701-5.

DOI: 10.1063/1.1836009

Google Scholar

[6] Martinuzzi S. et al., Segregation phenomena in large-size cast multicrystalline Si ingots. Solar Energy Materials and Solar Cells, 2007. 91(13): pp.1172-1175.

DOI: 10.1016/j.solmat.2007.03.026

Google Scholar

[7] Maurice J.L. et al., Fast diffusers Cu and Ni as the origin of electrical activity in a silicon grain boundary. Applied Physics Letters, 1989. 55(3): pp.241-243.

DOI: 10.1063/1.101919

Google Scholar

[8] Chen J. et al., Electron-beam-induced current study of small-angle grain boundaries in multicrystalline silicon. Scripta Materialia, 2005. 52(12): pp.1211-1215.

DOI: 10.1016/j.scriptamat.2005.03.010

Google Scholar

[9] Kazmerski L.L. et al., Evidence for the segregation of impurities to grain boundaries in multigrained silicon using Auger electron spectroscopy and secondary ion mass spectroscopy. Applied Physics Letters, 1980. 36(4): pp.323-325.

DOI: 10.1063/1.91479

Google Scholar

[10] Pizzini S. et al., From electronic grade to solar grade silicon: chances and challenges in photovoltaics. physica status solidi (a), 2005. 202(15): pp.2928-2942.

DOI: 10.1002/pssa.200521104

Google Scholar

[11] Lu J. et al., Effects of grain boundary on impurity gettering and oxygen precipitation in polycrystalline sheet silicon. Journal of Applied Physics, 2003. 94(1): pp.140-144.

DOI: 10.1063/1.1578699

Google Scholar

[12] Sachdeva R. et al., Recombination activity of copper in silicon. Applied Physics Letters, 2001. 79(18): pp.2937-2939.

DOI: 10.1063/1.1415350

Google Scholar

[13] Buonassisi T. et al., Analysis of copper-rich precipitates in silicon: Chemical state, gettering, and impact on multicrystalline silicon solar cell material. Journal of Applied Physics, 2005. 97(6): pp.063503-9.

DOI: 10.1063/1.1827913

Google Scholar

[14] Savin H. et al., Role of copper in light induced minority-carrier lifetime degradation of silicon. Applied Physics Letters, 2009. 95(15): p.152111.

DOI: 10.1063/1.3250161

Google Scholar

[15] Tang K. et al., Critical assessment of the impurity diffusivities in solid and liquid silicon. JOM Journal of the Minerals, Metals and Materials Society, 2009. 61(11): pp.49-55.

DOI: 10.1007/s11837-009-0167-7

Google Scholar

[16] Information on https: /www. vasp. at.

Google Scholar

[17] Kresse G. et al., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 1996. 54(16): pp.11169-11186.

DOI: 10.1103/physrevb.54.11169

Google Scholar

[18] Autruffe A. et al., Impact of growth rate on impurities segregation at grain boundaries in silicon during Bridgman growth. Journal of Crystal Growth, 2013. 372(0): pp.180-188.

DOI: 10.1016/j.jcrysgro.2013.03.037

Google Scholar

[19] Trempa M. et al., Mono-crystalline growth in directional solidification of silicon with different orientation and splitting of seed crystals. Journal of Crystal Growth, 2012. 351(1): pp.131-140.

DOI: 10.1016/j.jcrysgro.2012.04.035

Google Scholar

[20] Perdew J.P. et al., Generalized Gradient Approximation Made Simple. Physical Review Letters, 1996. 77(18): pp.3865-3868.

DOI: 10.1103/physrevlett.77.3865

Google Scholar

[21] Trumbore F.A., Solid solubilities of impurity element in germanium and silicon. Bell Labs Tech. J., 1960. 39: pp.205-33.

DOI: 10.1002/j.1538-7305.1960.tb03928.x

Google Scholar