[1]
V.T. Witusiewicz, U. Hecht, S.G. Fries, S. Rex, The Ag-Al-Cu system. Part II. A thermo-dynamic evaluation of the entire system, J. of Alloys and Comp. 387 (2005) 217-227.
DOI: 10.1016/j.jallcom.2004.06.078
Google Scholar
[2]
V.T. Witusiewicz, L. Sturz, U. Hecht, S. Rex, Phase equilibria and eutectic growth in quaternary organic alloys amino-methyl-propanediol–(D)camphor–neopentylglycol–succinonitrile (AMPD–DC–NPG–SCN), J. Crystal Growth 297 (2006) 117-132.
DOI: 10.1016/j.jcrysgro.2006.09.004
Google Scholar
[3]
A. Ourdjini, J. Liu, R. Elliot, Eutectic spacing selection in the Al-Cu system, Mat. Sci. Tech. 10 (1994)312-318.
DOI: 10.1179/mst.1994.10.4.312
Google Scholar
[4]
A. Dennstedt, L. Ratke, Microstructures of directionally solidified Al-Cu-Ag ternary eutectics, Trans, Indian Inst. Met. 65(6) (2012) 777-782.
DOI: 10.1007/s12666-012-0172-3
Google Scholar
[5]
U. Hecht. V. Witusiewicz, A. Drevermann, Coupled growth of Al-Al2Cu eutectics in Al-Cu-Ag alloys, IOP Conf. Ser.: Mater. Sci. Eng. 27 (2011) 012029.
DOI: 10.1088/1757-899x/27/1/012029
Google Scholar
[6]
M. Plapp, A. Karma, Eutectic colony formation: A stability analysis, Phys. Rev. E 60, 6 (1999) 6865-6889.
DOI: 10.1103/physreve.60.6865
Google Scholar
[7]
H. Dean, J.E. Gruzleski, Observations on the details of fault line movement in lamellar eutectics, J. Crystal Growth 21 (1974) 51-57.
DOI: 10.1016/0022-0248(74)90148-1
Google Scholar
[8]
S. Akamatsu, S. Bottin-Rousseau, G. Faivre, Experimental evidence for a zigzag bifurcation in bulk lamellar eutectic growth, Phys. Rev. Lett. 93 (2004) 175701.
DOI: 10.1103/physrevlett.93.175701
Google Scholar
[9]
B. Zhang, A. Griesche, A. Meyer, Diffusion in Al-Cu melts studied by time-resolved x-ray radiography, Phys. Rev. Lett. 104 (2010) 035902.
DOI: 10.1103/physrevlett.104.035902
Google Scholar
[10]
F. Kargl, M. Engelhardt, F. Yang, H. Weis, P. Schmakat, B. Schillinger, A. Griesche, A. Meyer, In situ studies of mass transport in liquid alloys by means of neutron radiography, J. Phys.: Condens. Matter 23 (2011) 254201.
DOI: 10.1088/0953-8984/23/25/254201
Google Scholar
[11]
A. Bulla, C. Carreno-Bodensiek, B. Pustal, R. Berger, A. Bührig-Polaczek, A. Ludwig, Determination of the solid-liquid interface energy in the Al-Cu-Ag system, Met. Mat. Trans. 38A (2007) 1956-(1964).
DOI: 10.1007/s11661-007-9275-6
Google Scholar
[12]
M. Gündüz, J.D. Hunt, The measurement of solid-liquid surface energies in the Al-Cu, Al-Si and Pb-Sn systems, Acta Met. 33 (1985) 1651-1672.
DOI: 10.1016/0001-6160(85)90161-0
Google Scholar
[13]
U. Hecht, M. Schaarschmidt, M. Şerefoğlu, A. Dennstedt, A. Genau, Crystal orientations relationships in Al-Al2Cu, Al-Ag2Al and Al-Al2Cu-Ag2Al eutectics, to be submitted.
DOI: 10.1007/s11661-022-06590-9
Google Scholar
[14]
V. Kokotin, U. Hecht, Molecular dynamics simulations of Al-Al2Cu phase boundaries, Comp. Mat. Sci. 86 (2014) 30-37.
DOI: 10.1016/j.commatsci.2014.01.014
Google Scholar
[15]
S. Akamatsu, S. Bottin-Rousseau, M. Şerefoğlu, G. Faivre, A theory of thin lamellar eutectic growth with anisotropic interphase boundaries. Acta Mat. 60 (2012) 3199-3205.
DOI: 10.1016/j.actamat.2012.02.031
Google Scholar
[16]
M. Perrut, A. Parisi, S. Akamatsu, S. Bottin-Rousseau, G. Faivre, M. Plapp, Role of transverse temperature gradients in the generation of lamellar eutectic solidification patterns, Acta Mat. 58 (2010) 1761-1769.
DOI: 10.1016/j.actamat.2009.11.018
Google Scholar
[17]
S. Akamatsu, M. Plapp, G. Faivre, A. Karma, Overstability of lamellar eutectic growth below the minimum-undercooling spacing, Met. Mat. Trans. 35A (2004) 1815 - 1828.
DOI: 10.1007/s11661-004-0090-z
Google Scholar
[18]
K. A. Jackson, J.D. Hunt, Lamellar and rod eutectic growth, Trans. Met. Soc. AIME 236 (1966) 1129-1142.
Google Scholar
[19]
D. E. Coates, S. V. Subramanian, G. R. Purdy, Solid-liquid interface stability during solidification of dilute ternary alloys, Trans. Met. Soc. AIME 242 (1968) 800-809.
Google Scholar