Magnetic Fields, Convection and Solidification

Article Preview

Abstract:

In solidification processes the fluid flow occurs almost at every scale from the bulk, near the interfaces and deeply in the mushy zone. Numerical modeling is a valuable tool for understanding and master the solidification processes, however, macro-scale models are not always able to predict in detail the random behavior of the solidification process whereas models for micro scales are not capable to take into account a complex structure of flows which enter into the mushy zone. In the present paper the variety of the flows and imprints they left on solidification structure are discussed and illustrated with experimental data which naturally comprise every flow occurring in the process.

You might also be interested in these eBooks

Info:

[1] C.J. Paradies, R.N. Smith, M.E. Glicksman, The influence of convection during solidification on fragmentation of the mushy zone of a model alloy, Metall. Mat. Trans A, 28A (1997) 875-883.

DOI: 10.1007/s11661-997-0075-9

Google Scholar

[2] A.J. Mikelson, J. Karklin, Control of crystallization processes by magnetic fields, J. Cryst. Gr., 52 (1981) 524-529.

DOI: 10.1016/0022-0248(81)90333-x

Google Scholar

[3] L.A. Gorbunov, Effect of thermoelectromagnetic convection on the production of bulk single crystals consisting of semiconductor melts in a constant magnetic field, Magnetohydrodynamics 4 (1988) 404-406.

Google Scholar

[4] Yu. Gelfgat, L.A. Gorbunov, An additional source of forced convection in semiconductor melts during single-crystal growth in magnetic fields, Sov. Phys. Dokl., 34 (1989) 470-472.

Google Scholar

[5] A. Idogawa, M. Sugizawa, S. Takeuchi, K. Sorimachi, T. Fujii, Control of molten steel flow in continuous casting mold by two static magnetic fields imposed on whole width, Mat. Sci. Eng. A 173 (1993) 293-297.

DOI: 10.1016/0921-5093(93)90231-3

Google Scholar

[6] X. Li, Y. Fautrelle, Z. -M. Ren, Influence of an axial high magnetic field on the liquid-solid transformation in Al-Cu hypoeutectic alloys and on the microstructure of the solid, Acta Mater., 55 (2007) 1377-1386.

DOI: 10.1016/j.actamat.2006.10.007

Google Scholar

[7] X. Li, Y. Fautrelle, Z. -M. Ren, Influence of thermoelectric effects on the solid–liquid interface shape and cellular morphology in the mushy zone during the directional solidification of Al–Cu alloys under a magnetic field, Acta Mater., 55 (2007).

DOI: 10.1016/j.actamat.2007.02.031

Google Scholar

[8] L. Hachani, Etude de l'influence de la convection naturelle et forcée sur la solidification d'un alliage métallique binaire, PhD Thesis of the Grenoble University, October (2013).

Google Scholar

[9] D.J. Hebditch, J.D. Hunt, Observations of ingot macrosegregation on model systems, Metall. Trans., 5 (1974) 1557-1564.

DOI: 10.1007/bf02646326

Google Scholar

[10] R. Moreau, Magnetohydrodynamics, Kluwer Academic Publisher, London (1990).

Google Scholar

[11] J.A. Shercliff, Thermoelectric Magnetohydrodynamics, J. Fluid Mech. 91 (1979) 231-251.

DOI: 10.1017/s0022112079000136

Google Scholar

[12] O. Lielausis, A.J. Mikelson, E. Scherbinine, Yu. Gelfgat, Electric currents in molten metals and their interaction with a magnetic field, Proc. IUTAM Symp. Metallurgical Applications of Magnetohydrodynamics, Cambridge (UK), 6-10 Sept. 1982, 234-244.

Google Scholar

[13] R. Moreau, O. Laskar, M. Tanaka, D. Camel, Thermoelectric MHD effects on solidification of metallic alloys in the dendritic regime. Mater. Sci. Eng. A, 173 (1993) 93-100.

DOI: 10.1016/0921-5093(93)90194-j

Google Scholar

[14] P. Lehmann, R. Moreau, D. Camel, R. Bolcato, Modification of Interdendritic Convection in Directional Solidification by a Uniform Magnetic Field, Acta Mater., 46 (1998) 4067-4079.

DOI: 10.1016/s1359-6454(98)00064-0

Google Scholar

[15] A. Kao, G. Djambazov, K. Pericleous, V. Voller, Thermoelectric MHD in dendritic solidification, Magnetohydrodynamics, 45 (2009) 305-316.

DOI: 10.22364/mhd.45.3.1

Google Scholar

[16] X. Li, ZM. Ren, A. Gagnoud, O. Budenkova, Y. Fautrelle, WL. Ren, Effects of Thermoelectric Magnetic Convection on the Solidification Structure During Directional Solidification under Lower Transverse Magnetic Field, Metall. Mater. Trans. A 42A (2011).

DOI: 10.1007/s11661-011-0741-9

Google Scholar

[17] I. Kaldre, Y. Fautrelle, J. Etay, A. Bojarevics, L. Buligins, Investigation of liquid phase motion generated by the thermoelectric current and magnetic field interaction, Magnetohydrodynamics 46 (2010) 371-380.

DOI: 10.22364/mhd.46.4.6

Google Scholar

[18] J. Wang , Y. Fautrelle, Z. M. Ren, X. Li, H. Nguyen-Thi, N. Mangelinck-Noel, G. Salloum Abou Jaoude, Y. B. Zhong, I. Kaldre, A. Bojarevics, and L. Buligins, Thermoelectric magnetic force acting on the solid during directional solidification under a static magnetic field, Appl. Phys. Lett. , 101 (2012).

DOI: 10.1063/1.4772510

Google Scholar

[19] K. Inoue, Y. Yasuda, N. Nakatsuka, Y. Minami, T. Nagira, M. Yoshiya, A. Sugiyama, K. Uesugi, K. Umetani, Proc. 4th International Conference on Magneto-Science (ICMS2011), Shanghai & Xi'an, P.R. China, Oct. 9-12, (2011).

Google Scholar

[20] X. Li, Y. Fautrelle, K. Zaidat, A. Gagnoud, Z. -M. Ren, Y. -D. Chang, R. Moreau, C. Esling, Columnar-to-equiaxed transitions in al-based alloys during directional solidification under a high magnetic field, J. Crystal Growth, 312 (2010) 267-272.

DOI: 10.1016/j.jcrysgro.2009.10.002

Google Scholar