p.361
p.367
p.375
p.384
p.390
p.396
p.402
p.408
p.414
Simulation of Low Frequency Electromagnetic DC Casting
Abstract:
A comprehensive multiphysics model has been developed to describe the effect of the low frequency electromagnetic field (LFEM) [1, on solidification in the hot-top Direct-Chill (DC) casting [ of round aluminium alloy billets. The volume averaged equations and the rigid solid phase assumption are assumed for fluid flow and heat transfer [. The electromagnetic induction equation for the field imposed by the coil is solved using the diffuse approximate method (DAM), structured in axial symmetry with Gaussian weight function, 6 polynomial basis and 9 nodded domains. The heat, mass, and momentum transfer equations are solved in primitive variables by meshless [ method using 5 nodded domains of influence and 5 scaled multiquadrics radial basis functions, using collocation. Explicit time stepping is used. Pressure-velocity coupling is performed by the fractional step method. The effects of intensity and frequency of the LFEM [ on the velocity and temperature fields is investigated. A comparison of the calculated results with different LFEM field process variables with that of the conventional hot-top DC casting process indicates that the velocity patterns, the temperature profiles, and the shape of the sump could be modified remarkably.
Info:
Periodical:
Pages:
390-395
Citation:
Online since:
May 2014
Authors:
Price:
Сopyright:
© 2014 Trans Tech Publications Ltd. All Rights Reserved
Share:
Citation: