Flow Control during Solidification of AlSi-Alloys by Means of Tailored AC Magnetic Fields and the Impact on the Mechanical Properties

Article Preview

Abstract:

This paper presents an experimental study which in a first stage is focused on obtaining quantitative information about the isothermal flow field exposed to various magnetic field configurations. Melt stirring has been realized by utilizing a rotating magnetic field. In a second step directional solidification of AlSi7 alloys from a water-cooled copper chill was carried out to verifythe effect of a certain flow field on the solidification process and on the resulting mechanical properties. The solidified structure was reviewed in comparison to an unaffected solidified ingot. Measurements of the phase distribution, the grain size, the hardness and the tensile strength were realized. Our results demonstrate the potential of magnetic fields to control the grain size, the formation of segregation freckles and the mechanical properties. In particular, time–modulated rotating fields show their capability to homogenize both the grain size distribution and the corresponding mechanical properties.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 790-791)

Pages:

384-389

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. G. McCartney: Grain refining of aluminium and its alloys using inoculants, Int. Mater. Rev. 34 (1989) 247-260.

DOI: 10.1179/imr.1989.34.1.247

Google Scholar

[2] R.K. Trivedi: Microstructure characteristics of rapidly solidified alloys, Mater. Sci. Eng. A 178 (1994) 129-135.

Google Scholar

[3] M.C. Flemings: Behavior of metal alloys in the semisolid state, Metall. Trans. A 22 (1991) 957-981.

DOI: 10.1007/bf02661090

Google Scholar

[4] G.J. Eskin: Ultrasound treatment of Light Alloy Melt: Gordon and Breach, Amsterdam, (1998).

Google Scholar

[5] E.O. Hall: The Deformation and Ageing of Mild Steel, Proc. Phys. Soc. London 64B (1951) 747-753.

Google Scholar

[6] J.C. Li and Y.T. Chou: The Role of Dislocations in the Flow Stress Grain Size Relationships, Met. Trans. 1 (1970) 1145-1159.

DOI: 10.1007/bf02900225

Google Scholar

[7] T.M. Yue, H.U. Ha and N.J. Musson: Grain size effects on the mechanical properties of some squeeze cast light alloys, J. Mat. Sci. 30 (1995) 2277-2283.

DOI: 10.1007/bf01184573

Google Scholar

[8] J. Waldman, H. Sulinski and H. Markus: The Effect of Ingot Processing Treatments on the Grain Size and Properties of AI Alloy 7075, Metall. Trans. 5 (1974) 573-584.

DOI: 10.1007/bf02644652

Google Scholar

[9] T.E. Quested: Understanding mechanisms of grain refinement of aluminium alloys by inoculation, Mater. Sci. Techn. 20 (2004) 1357-1369.

DOI: 10.1179/026708304225022359

Google Scholar

[10] B.S. Murty, S.A. Kori and M. Chakraborty: Grain refinement of aluminium and its alloys by heterogeneous nucleation and alloying, Int. Mat. Rev. 47(1) (2002) 3-29.

DOI: 10.1179/095066001225001049

Google Scholar

[11] W.D. Griffiths and D.G. McCartney: The effect of electromagnetic stirring during solidification on the structure of A1-Si alloys, Mat. Sci. Eng. A 216 (1996) 47-60.

DOI: 10.1016/0921-5093(96)10392-0

Google Scholar

[12] M. Medina, Y. Du Terrail, F. Durand and Y. Fautrelle: Channel Segregation during Solidification and the Effects of an Alternating Traveling Magnetic Field, Metall. Mater. Trans. B 35 (2004) 743-755.

DOI: 10.1007/s11663-004-0014-8

Google Scholar

[13] P.A. Nikrityuk, K. Eckert and R. Grundmann: A numerical study of unidirectional solidification of a binary metal alloy under influence of a rotating magnetic field, Int. J. Heat Mass Transfer 49 (2006) 1501-1515.

DOI: 10.1016/j.ijheatmasstransfer.2005.08.035

Google Scholar

[14] S. Kojima, T. Ohnishi, T. Mori, K. Shiwaku, I. Wakusagi and M. Ohgarni: Development of Megnetic-stirring System in Bloom-caster, Proc. of the 66th Steelmaking Conf., Atlanta, ISS-AIME, 1983, Warrendale: 127-131.

Google Scholar

[15] S. Eckert, P. A. Nikrityuk, D. Räbiger, K. Eckert and G. Gerbeth: Efficient Melt Stirring Using Pulse Sequences of a Rotating Magnetic Field: Part I, Metall. Mater. Trans. B 38 (2007) 977-988.

DOI: 10.1007/s11663-007-9096-4

Google Scholar

[16] B. Willers, S. Eckert, P.A. Nikrityuk, D. Räbiger, J. Dong, K. Eckert and G. Gerbeth: Efficient Melt Stirring Using Pulse Sequences of a Rotating Magnetic Field: Part II, Metall. Mater. Trans. B 39 (2008) 304-316.

DOI: 10.1007/s11663-008-9126-x

Google Scholar

[17] Y. Takeda: Development of an ultrasound velocity profile monitor, Nucl. Eng. Design 126 (1991) 277-284.

Google Scholar

[18] S. Franke, H. Lieske, A. Fischer, L. Büttner, J. Czarske, D. Räbiger, S. Eckert, Two-dimensional ultrasound Doppler velocimeter for flow mapping of unsteady liquid metal flows, Ultrasonics 53, Issue 3, (2013) 691-700.

DOI: 10.1016/j.ultras.2012.10.009

Google Scholar