Influence of Crystal Morphological Parameters on the Solidification of ESR Ingot

Article Preview

Abstract:

Electroslag remelting (ESR) is an advanced process to produce high quality steel. During the ESR process, the steel electrode is melted and then solidified directionally in a water-cooled mold. The quality of the ingot is strongly dependent on the shape of melt pool, i.e. the depth and thickness of mushy zone, which is in turn influenced by the bulk and interdendritic flow. Here, we perform a numerical study to investigate the effect of crystal morphological parameter such as primary dendrite arm spacing on the solidification of the ESR ingot ( 750 mm). The crystal morphology is dominantly columnar and dendritic, thus a mixture enthalpy-based solidification model is used. Accordingly the mushy zone is considered as a porous media where the interdendritic flow is calculated based on the permeability. The permeability is determined as function of the liquid fraction and primary dendrite arm spacing according to Heinrich and Poirier [Comptes Rendus Mecanique, 2004, pp. 429-44]. The modeling results were verified against experimental results.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 790-791)

Pages:

396-401

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Hoyle, Electroslag Processes, Applied Science Publishers, London, (1983).

Google Scholar

[2] E. Plöckinger, Electroslag remelting – A modern tool in metallurgy, J. of the Iron and Steel Institute, (1973) 533-541.

Google Scholar

[3] K. O. Yu, J. A. Domingue, G.E. Maurer and H.D. Flanders, Macrosegregation in ESR and VAR processes, J. of Metals, (1986) 46-50.

DOI: 10.1007/bf03257955

Google Scholar

[4] V. Weber, A. Jardy, B. Dussoubs, et al., A comprehensive model of the electroslag remelting process: description and validation, Metall. Trans. B, 40B (2009), 271-280.

DOI: 10.1007/s11663-008-9208-9

Google Scholar

[5] A. D Patel, M. Gierulal, D.J. Tallman, Bounds on model parameters for computational analysis of the ESR process, Proc. of LMPC, USA (2009), 201-211.

Google Scholar

[6] M.J.M. Krane, M. Fahrmann, Jeff Yanke, et al., A comparison of predictions of transport phenomena in electroslag remelting to industrial data, Proc. of LMPC, France (2011), 65-72.

Google Scholar

[7] P.C. Carman, Flow of gases through porous media, Butterworths Publisher, London, (1956).

Google Scholar

[8] W. Schutzenhofer, G. Reiter, R. Tanzer, et al., Experimental investigations for the validation of a numerical PESR-model, Proc. of LMPC, France (2007), 49-54.

Google Scholar

[9] Z. Jiang and Y. Dong, Solidification model for electroslag remelting process, Proc. of LMPC, France (2007), 89-94.

Google Scholar

[10] A. Kharicha, M. Wu, A. Ludwig, B. Ofner, H. Holzgruber, CFD Modeling and simulation in materials processing, Wiley publication, USA, 2012, pp.139-148.

Google Scholar

[11] A. Kharicha, W. Schützenhöfer, A. Ludwig and R. Tanzer, Numerical and experimental investigations on the ESR process of the hot work tool steel H11, Proc. of LMPC, USA (2009) 235-242.

Google Scholar

[12] T.W. Clyne, W. Kurz, Solute redistribution during solidification with rapid solid state diffusion, Metall. Trans., 12A (1981), 965-971.

DOI: 10.1007/bf02643477

Google Scholar

[13] F. R. Menter, Two-equation eddy-Viscosity turbulence models for engineering applications, AIAA Journal, 32 (8) (1994) 1598-1605.

DOI: 10.2514/3.12149

Google Scholar

[14] M. C. Schneider and C. Beckermann, A numerical study of the combined effects of micro segregation, mushy zone permeability and flow, caused by volume contraction and thermosolutal convection, on macrosegregation and eutectic formation in binary alloy solidification, Int. J. Heat Mass Transfer, 38(18) (1995).

DOI: 10.1016/0017-9310(95)00054-d

Google Scholar

[15] J. C. Heinrich and D. R. Poirier, Convection modeling in directional solidification, Comptes Rendus Mecanique, 332 (5-6) (2004), 429-445.

DOI: 10.1016/j.crme.2004.02.001

Google Scholar

[16] E. J. Pickering, Macrosegregation in steel ingots: the applicability of modeling and characterization techniques, ISIJ Int., 53 (6) (2013) 935-949.

DOI: 10.2355/isijinternational.53.935

Google Scholar

[17] H. Jacobi and K. Schwerdtfeger, Dendritic morphology of steady state unidirectionally solidified steel, Metall. Trans. A, 7A (1976) 811-819.

DOI: 10.1007/bf02644078

Google Scholar

[18] E. Karimi Sibaki, A. Kharicha, M. Wu, A. Ludwig, H. Holzgruber, B. Ofner, M. Ramprecht, A numerical study on the influence of the frequency of the applied AC current on the electroslag remelting process, Proc. of LMPC, USA (2013), 13-19.

DOI: 10.1002/9781118830857.ch2

Google Scholar

[19] H. Holzgruber, W. Holzgruber, A. Scheriau, et al, Investigation of the implications of the current conductive mold technology with respect to the internal and surface quality of ESR ingots, Proc. of LMPC, France (2011) 57-64.

Google Scholar

[20] A. H. Dilawari, and J. Szekely, Heat transfer and fluid flow phenomena in electroslag refining, Metall. Trans. B, 9B (1975) 77-87.

DOI: 10.1007/bf02822674

Google Scholar

[21] I. P. Borodin, V. A. Goryainov, V. S. Koshman, et al., Influence of solidification conditions on dendritic structure and segregation of elements in electroslag remelted ingots, Steel in the USSR (15) (1985) 533-537.

Google Scholar